Le-Rademacher Jennifer G, Therneau Terry M, Ou Fang-Shu
Division of Clinical Trials and Biostatistics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA.
Curr Epidemiol Rep. 2022;9(3):183-189. doi: 10.1007/s40471-022-00291-y. Epub 2022 Jun 29.
Survival analyses are common and essential in medical research. Most readers are familiar with Kaplan-Meier curves and Cox models; however, very few are familiar with multistate models. Although multistate models were introduced in 1965, they only recently receive more attention in the medical research community. The current review introduces common terminologies and quantities that can be estimated from multistate models. Examples from published literature are used to illustrate the utility of multistate models.
A figure of states and transitions is a useful depiction of a multistate model. Clinically meaningful quantities that can be estimated from a multistate model include the probability in a state at a given time, the average time in a state, and the expected number of visits to a state; all of which describe the absolute risks of an event. Relative risk can also be estimated using multistate hazard models.
Multistate models provide a more general and flexible framework that extends beyond the Kaplan-Meier estimator and Cox models. Multistate models allow simultaneous analyses of multiple disease pathways to provide insights into the natural history of complex diseases. We strongly encourage the use of multistate models when analyzing time-to-event data.
The online version contains supplementary material available at 10.1007/s40471-022-00291-y.
生存分析在医学研究中很常见且必不可少。大多数读者熟悉Kaplan-Meier曲线和Cox模型;然而,很少有人熟悉多状态模型。尽管多状态模型于1965年被引入,但它们直到最近才在医学研究界受到更多关注。本综述介绍了可从多状态模型中估计的常见术语和数量。引用已发表文献中的例子来说明多状态模型的实用性。
状态和转移图是多状态模型的一种有用描述。可从多状态模型中估计的具有临床意义的数量包括在给定时间处于某一状态的概率、在某一状态的平均时间以及对某一状态的预期访问次数;所有这些都描述了事件的绝对风险。相对风险也可以使用多状态风险模型进行估计。
多状态模型提供了一个比Kaplan-Meier估计器和Cox模型更通用、更灵活的框架。多状态模型允许同时分析多种疾病途径,以深入了解复杂疾病的自然史。我们强烈鼓励在分析事件发生时间数据时使用多状态模型。
在线版本包含可在10.1007/s40471-022-00291-y获取的补充材料。