Suppr超能文献

多状态模型的效用:用于事件发生时间数据的灵活框架。

The Utility of Multistate Models: A Flexible Framework for Time-to-Event Data.

作者信息

Le-Rademacher Jennifer G, Therneau Terry M, Ou Fang-Shu

机构信息

Division of Clinical Trials and Biostatistics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA.

出版信息

Curr Epidemiol Rep. 2022;9(3):183-189. doi: 10.1007/s40471-022-00291-y. Epub 2022 Jun 29.

Abstract

PURPOSE OF REVIEW

Survival analyses are common and essential in medical research. Most readers are familiar with Kaplan-Meier curves and Cox models; however, very few are familiar with multistate models. Although multistate models were introduced in 1965, they only recently receive more attention in the medical research community. The current review introduces common terminologies and quantities that can be estimated from multistate models. Examples from published literature are used to illustrate the utility of multistate models.

RECENT FINDINGS

A figure of states and transitions is a useful depiction of a multistate model. Clinically meaningful quantities that can be estimated from a multistate model include the probability in a state at a given time, the average time in a state, and the expected number of visits to a state; all of which describe the absolute risks of an event. Relative risk can also be estimated using multistate hazard models.

SUMMARY

Multistate models provide a more general and flexible framework that extends beyond the Kaplan-Meier estimator and Cox models. Multistate models allow simultaneous analyses of multiple disease pathways to provide insights into the natural history of complex diseases. We strongly encourage the use of multistate models when analyzing time-to-event data.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40471-022-00291-y.

摘要

综述目的

生存分析在医学研究中很常见且必不可少。大多数读者熟悉Kaplan-Meier曲线和Cox模型;然而,很少有人熟悉多状态模型。尽管多状态模型于1965年被引入,但它们直到最近才在医学研究界受到更多关注。本综述介绍了可从多状态模型中估计的常见术语和数量。引用已发表文献中的例子来说明多状态模型的实用性。

最新发现

状态和转移图是多状态模型的一种有用描述。可从多状态模型中估计的具有临床意义的数量包括在给定时间处于某一状态的概率、在某一状态的平均时间以及对某一状态的预期访问次数;所有这些都描述了事件的绝对风险。相对风险也可以使用多状态风险模型进行估计。

总结

多状态模型提供了一个比Kaplan-Meier估计器和Cox模型更通用、更灵活的框架。多状态模型允许同时分析多种疾病途径,以深入了解复杂疾病的自然史。我们强烈鼓励在分析事件发生时间数据时使用多状态模型。

补充信息

在线版本包含可在10.1007/s40471-022-00291-y获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaa7/9392702/213a6b848e55/40471_2022_291_Fig1_HTML.jpg

相似文献

1
The Utility of Multistate Models: A Flexible Framework for Time-to-Event Data.
Curr Epidemiol Rep. 2022;9(3):183-189. doi: 10.1007/s40471-022-00291-y. Epub 2022 Jun 29.
2
Using multistate models with clinical trial data for a deeper understanding of complex disease processes.
Clin Trials. 2024 Oct;21(5):531-540. doi: 10.1177/17407745241267862. Epub 2024 Aug 2.
3
The clinical course of cirrhosis: The importance of multistate models and competing risks analysis.
Hepatology. 2015 Jul;62(1):292-302. doi: 10.1002/hep.27598. Epub 2015 May 15.
6
A multistate model incorporating estimation of excess hazards and multiple time scales.
Stat Med. 2021 Apr;40(9):2139-2154. doi: 10.1002/sim.8894. Epub 2021 Feb 8.
7
A semi-Markov multistate cure model for estimating intervention effects in stepped wedge design trials.
Stat Methods Med Res. 2023 Aug;32(8):1511-1526. doi: 10.1177/09622802231176123. Epub 2023 Jul 14.
8
New concepts on the clinical course and stratification of compensated and decompensated cirrhosis.
Hepatol Int. 2018 Feb;12(Suppl 1):34-43. doi: 10.1007/s12072-017-9808-z. Epub 2017 Jul 5.
9
A joint modelling approach for multistate processes subject to resolution and under intermittent observations.
Stat Med. 2017 Feb 10;36(3):496-508. doi: 10.1002/sim.7149. Epub 2016 Oct 17.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Malnutrition among under-five children in amhara and oromia regions, Ethiopia: Continuous time markov multi-state modeling.
PLoS One. 2025 Aug 21;20(8):e0330537. doi: 10.1371/journal.pone.0330537. eCollection 2025.
3
Persistent severe acute kidney injury is a major modifiable determinant of outcome during critical illness.
Intensive Care Med. 2025 Mar;51(3):542-555. doi: 10.1007/s00134-025-07821-4. Epub 2025 Feb 18.
4
Modeling of Disease Progression of Type 2 Diabetes Using Real-World Data: Quantifying Competing Risks of Morbidity and Mortality.
CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):606-615. doi: 10.1002/psp4.13301. Epub 2025 Jan 17.
6
Selection Bias in Reporting of Median Waiting Times in Organ Transplantation.
JAMA Netw Open. 2024 Sep 3;7(9):e2432415. doi: 10.1001/jamanetworkopen.2024.32415.
7
A pharmacometric multistate model for predicting long-term treatment outcomes of patients with pulmonary TB.
J Antimicrob Chemother. 2024 Oct 1;79(10):2561-2569. doi: 10.1093/jac/dkae256.
10
Quantifying intraspecific variation in host resistance and tolerance to a lethal pathogen.
J Anim Ecol. 2025 Mar;94(3):316-329. doi: 10.1111/1365-2656.14106. Epub 2024 May 21.

本文引用的文献

2
Application of multi-state models in cancer clinical trials.
Clin Trials. 2018 Oct;15(5):489-498. doi: 10.1177/1740774518789098. Epub 2018 Jul 23.
3
Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study.
Hepatology. 2018 May;67(5):1726-1736. doi: 10.1002/hep.29546. Epub 2018 Mar 23.
4
Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation.
N Engl J Med. 2017 Aug 3;377(5):454-464. doi: 10.1056/NEJMoa1614359. Epub 2017 Jun 23.
5
Does Cox analysis of a randomized survival study yield a causal treatment effect?
Lifetime Data Anal. 2015 Oct;21(4):579-93. doi: 10.1007/s10985-015-9335-y. Epub 2015 Jun 24.
6
Interpretability and importance of functionals in competing risks and multistate models.
Stat Med. 2012 May 20;31(11-12):1074-88. doi: 10.1002/sim.4385. Epub 2011 Nov 14.
7
The hazards of hazard ratios.
Epidemiology. 2010 Jan;21(1):13-5. doi: 10.1097/EDE.0b013e3181c1ea43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验