Suppr超能文献

一种用于预测肺结核患者长期治疗结局的药物代谢动力学多状态模型。

A pharmacometric multistate model for predicting long-term treatment outcomes of patients with pulmonary TB.

机构信息

Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

J Antimicrob Chemother. 2024 Oct 1;79(10):2561-2569. doi: 10.1093/jac/dkae256.

Abstract

BACKGROUND

Studying long-term treatment outcomes of TB is time-consuming and impractical. Early and reliable biomarkers reflecting treatment response and capable of predicting long-term outcomes are urgently needed.

OBJECTIVES

To develop a pharmacometric multistate model to evaluate the link between potential predictors and long-term outcomes.

METHODS

Data were obtained from two Phase II clinical trials (TMC207-C208 and TMC207-C209) with bedaquiline on top of a multidrug background regimen. Patients were typically followed throughout a 24 week investigational treatment period plus a 96 week follow-up period. A five-state multistate model (active TB, converted, recurrent TB, dropout, and death) was developed to describe observed transitions. Evaluated predictors included patient characteristics, baseline TB disease severity and on-treatment biomarkers.

RESULTS

A fast bacterial clearance in the first 2 weeks and low TB bacterial burden at baseline increased probability to achieve conversion, whereas patients with XDR-TB were less likely to reach conversion. Higher estimated mycobacterial load at the end of 24 week treatment increased the probability of recurrence. At 120 weeks, the model predicted 55% (95% prediction interval, 50%-60%), 6.5% (4.2%-9.0%) and 7.5% (5.2%-10%) of patients in converted, recurrent TB and death states, respectively. Simulations predicted a substantial increase of recurrence after 24 weeks in patients with slow bacterial clearance regardless of baseline bacterial burden.

CONCLUSIONS

The developed multistate model successfully described TB treatment outcomes. The multistate modelling framework enables prediction of several outcomes simultaneously, and allows mechanistically sound investigation of novel promising predictors. This may help support future biomarker evaluation, clinical trial design and analysis.

摘要

背景

研究结核病的长期治疗结果既耗时又不切实际。目前迫切需要能够反映治疗反应并预测长期结果的早期、可靠的生物标志物。

目的

建立一个药物代谢动力学多状态模型,以评估潜在预测因子与长期结局之间的关系。

方法

从贝达喹啉联合多药背景方案治疗的两项 II 期临床试验(TMC207-C208 和 TMC207-C209)中获取数据。患者通常在 24 周的研究治疗期和 96 周的随访期内接受随访。建立了一个五状态多状态模型(活动性结核病、转化、复发性结核病、脱落和死亡)来描述观察到的状态转换。评估的预测因子包括患者特征、基线结核病严重程度和治疗期间的生物标志物。

结果

第 2 周快速细菌清除和基线时低结核细菌负荷增加了转化的可能性,而 XDR-TB 患者转化的可能性较低。24 周治疗结束时估计的分枝杆菌负荷越高,复发的可能性越大。在 120 周时,该模型预测转化、复发性结核病和死亡状态的患者分别有 55%(95%预测区间为 50%-60%)、6.5%(4.2%-9.0%)和 7.5%(5.2%-10%)。模拟结果表明,无论基线细菌负荷如何,细菌清除缓慢的患者在 24 周后复发的可能性会大大增加。

结论

所开发的多状态模型成功描述了结核病的治疗结果。多状态模型框架能够同时预测多个结局,并允许对新的有前途的预测因子进行有说服力的机制研究。这可能有助于支持未来的生物标志物评估、临床试验设计和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd6/11441995/de18327c6ffe/dkae256f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验