Suppr超能文献

基于行政数据的乳腺癌复发识别:算法的开发与验证。

Identifying Breast Cancer Recurrence in Administrative Data: Algorithm Development and Validation.

机构信息

Disease Pathway Management, Clinical Institutes and Quality Programs, Ontario Health, 525 University Avenue, Toronto, ON M5G 2L3, Canada.

Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada.

出版信息

Curr Oncol. 2022 Jul 28;29(8):5338-5367. doi: 10.3390/curroncol29080424.

Abstract

Breast cancer recurrence is an important outcome for patients and healthcare systems, but it is not routinely reported in cancer registries. We developed an algorithm to identify patients who experienced recurrence or a second case of primary breast cancer (combined as a "second breast cancer event") using administrative data from the population of Ontario, Canada. A retrospective cohort study design was used including patients diagnosed with stage 0-III breast cancer in the Ontario Cancer Registry between 1 January 2009 and 31 December 2012 and alive six months post-diagnosis. We applied the algorithm to healthcare utilization data from six months post-diagnosis until death or 31 December 2013, whichever came first. We validated the algorithm's diagnostic accuracy against a manual patient record review ( = 2245 patients). The algorithm had a sensitivity of 85%, a specificity of 94%, a positive predictive value of 67%, a negative predictive value of 98%, an accuracy of 93%, a kappa value of 71%, and a prevalence-adjusted bias-adjusted kappa value of 85%. The second breast cancer event rate was 16.5% according to the algorithm and 13.0% according to manual review. Our algorithm's performance was comparable to previously published algorithms and is sufficient for healthcare system monitoring. Administrative data from a population can, therefore, be interpreted using new methods to identify new outcome measures.

摘要

乳腺癌复发是患者和医疗体系的重要预后指标,但癌症登记处通常不会对此进行常规报告。我们开发了一种算法,旨在利用加拿大安大略省人群的行政数据,识别发生复发或原发性乳腺癌第二病例(统称为“第二乳腺癌事件”)的患者。该研究采用回顾性队列设计,纳入了 2009 年 1 月 1 日至 2012 年 12 月 31 日期间在安大略癌症登记处确诊为 0-III 期乳腺癌且在诊断后 6 个月存活的患者。我们将该算法应用于自诊断后 6 个月至死亡或 2013 年 12 月 31 日(以先发生者为准)的医疗保健利用数据。我们通过手动审查患者病历记录(=2245 例)对算法的诊断准确性进行了验证。该算法的敏感性为 85%,特异性为 94%,阳性预测值为 67%,阴性预测值为 98%,准确性为 93%,kappa 值为 71%,经患病率校正和偏差校正的 kappa 值为 85%。根据算法,第二乳腺癌事件的发生率为 16.5%,根据手动审查的发生率为 13.0%。该算法的性能与先前发表的算法相当,足以用于医疗体系监测。因此,可利用人群的行政数据采用新方法来识别新的预后指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7c/9406366/398030df5f07/curroncol-29-00424-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验