El Shair Zaid, Rawashdeh Samir A
Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
J Imaging. 2022 Jul 27;8(8):210. doi: 10.3390/jimaging8080210.
Event-based vision is an emerging field of computer vision that offers unique properties, such as asynchronous visual output, high temporal resolutions, and dependence on brightness changes, to generate data. These properties can enable robust high-temporal-resolution object detection and tracking when combined with frame-based vision. In this paper, we present a hybrid, high-temporal-resolution object detection and tracking approach that combines learned and classical methods using synchronized images and event data. Off-the-shelf frame-based object detectors are used for initial object detection and classification. Then, event masks, generated per detection, are used to enable inter-frame tracking at varying temporal resolutions using the event data. Detections are associated across time using a simple, low-cost association metric. Moreover, we collect and label a traffic dataset using the hybrid sensor DAVIS 240c. This dataset is utilized for quantitative evaluation using state-of-the-art detection and tracking metrics. We provide ground truth bounding boxes and object IDs for each vehicle annotation. Further, we generate high-temporal-resolution ground truth data to analyze tracking performance at different temporal rates. Our approach shows promising results, with minimal performance deterioration at higher temporal resolutions (48-384 Hz) when compared with the baseline frame-based performance at 24 Hz.
基于事件的视觉是计算机视觉的一个新兴领域,它具有异步视觉输出、高时间分辨率以及对亮度变化的依赖性等独特属性来生成数据。当与基于帧的视觉相结合时,这些属性能够实现强大的高时间分辨率目标检测和跟踪。在本文中,我们提出了一种混合的、高时间分辨率目标检测和跟踪方法,该方法使用同步图像和事件数据将学习方法与经典方法相结合。现成的基于帧的目标检测器用于初始目标检测和分类。然后,针对每次检测生成的事件掩码用于利用事件数据以不同的时间分辨率进行帧间跟踪。使用简单、低成本的关联度量在不同时间关联检测结果。此外,我们使用混合传感器DAVIS 240c收集并标注了一个交通数据集。该数据集用于使用最先进的检测和跟踪度量进行定量评估。我们为每个车辆标注提供了地面真值边界框和目标ID。此外,我们生成高时间分辨率的地面真值数据以分析不同时间速率下的跟踪性能。与24Hz的基于帧的基线性能相比,我们的方法在较高时间分辨率(48 - 384Hz)下性能下降最小,显示出了有前景的结果。