文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于去除磷酸盐和孔雀石绿染料的防污薄膜复合/纳米复合膜的研制

Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye.

作者信息

Borpatra Gohain Moucham, Karki Sachin, Yadav Diksha, Yadav Archana, Thakare Neha R, Hazarika Swapnali, Lee Hyung Keun, Ingole Pravin G

机构信息

Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.

出版信息

Membranes (Basel). 2022 Aug 7;12(8):768. doi: 10.3390/membranes12080768.


DOI:10.3390/membranes12080768
PMID:36005683
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9414074/
Abstract

Nowadays polymer-based thin film nanocomposite (TFN) membrane technologies are showing key interest to improve the separation properties. TFN membranes are well known in diverse fields but developing highly improved TFN membranes for the removal of low concentration solutions is the main challenge for the researchers. Application of functional nanomaterials, incorporated in TFN membranes provides better performance as permeance and selectivity. The polymer membrane-based separation process plays an important role in the chemical industry for the isolation of products and recovery of different important types of reactants. Due to the reduction in investment, less operating costs and safety issues membrane methods are mainly used for the separation process. Membranes do good separation of dyes and ions, yet their separation efficiency is challenged when the impurity is in low concentration. Herewith, we have developed, UiO-66-NH incorporated TFN membranes through interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) for separating malachite green dye and phosphate from water in their low concentration. A comparative study between thin-film composite (TFC) and TFN has been carried out to comprehend the benefit of loading nanoparticles. To provide mechanical strength to the polyamide layer ultra-porous polysulfone support was made through phase inversion. As a result, outstanding separation values of malachite green (MG) 91.90 ± 3% rejection with 13.32 ± 0.6 Lmh flux and phosphate 78.36 ± 3% rejection with 22.22 ± 1.1 Lmh flux by TFN membrane were obtained. The antifouling tendency of the membranes was examined by using bovine serum albumin (BSA)-mixed feed and deionized water, the study showed a good ~84% antifouling tendency of TFN membrane with a small ~14% irreversible fouling. Membrane's antibacterial test against and also revealed that the TFN membrane possesses antibacterial activity as well. We believe that the present work is an approach to obtaining good results from the membranes under tricky conditions.

摘要

如今,基于聚合物的薄膜纳米复合(TFN)膜技术在改善分离性能方面备受关注。TFN膜在多个领域广为人知,但开发用于去除低浓度溶液的高度改进型TFN膜是研究人员面临的主要挑战。将功能性纳米材料应用于TFN膜中,可在渗透通量和选择性方面提供更好的性能。基于聚合物膜的分离过程在化学工业中对产品分离和不同重要类型反应物的回收起着重要作用。由于投资减少、运营成本降低以及安全问题,膜法主要用于分离过程。膜对染料和离子具有良好的分离效果,但当杂质浓度较低时,其分离效率受到挑战。据此,我们通过哌嗪(PIP)和均苯三甲酰氯(TMC)之间的界面聚合,开发了负载UiO-66-NH的TFN膜,用于从水中分离低浓度的孔雀石绿染料和磷酸盐。进行了薄膜复合(TFC)膜和TFN膜之间的对比研究,以了解负载纳米颗粒的优势。通过相转化制备了超多孔聚砜支撑体,为聚酰胺层提供机械强度。结果,TFN膜对孔雀石绿(MG)的截留率高达91.90±3%,通量为13.32±0.6 Lmh;对磷酸盐的截留率为78.36±3%,通量为22.22±1.1 Lmh。使用牛血清白蛋白(BSA)混合进料和去离子水对膜的抗污染倾向进行了检测,研究表明TFN膜具有约84%的良好抗污染倾向,不可逆污染约为14%。膜对大肠杆菌和金黄色葡萄球菌的抗菌测试还表明,TFN膜也具有抗菌活性。我们相信,目前的工作是一种在复杂条件下从膜中获得良好结果的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/335e4d7bb6ec/membranes-12-00768-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/640d85d05929/membranes-12-00768-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/678f1792f45a/membranes-12-00768-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/00b0c09cfa14/membranes-12-00768-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/62da8b878b1e/membranes-12-00768-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/bbc0ae8e6abb/membranes-12-00768-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/f5ea4b2d7a8c/membranes-12-00768-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/72a87c1ead2f/membranes-12-00768-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/2bc38a03a692/membranes-12-00768-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/9515a9d5a005/membranes-12-00768-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/60c00d013449/membranes-12-00768-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/41865a9d3450/membranes-12-00768-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/bfd915b87856/membranes-12-00768-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/335e4d7bb6ec/membranes-12-00768-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/640d85d05929/membranes-12-00768-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/678f1792f45a/membranes-12-00768-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/00b0c09cfa14/membranes-12-00768-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/62da8b878b1e/membranes-12-00768-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/bbc0ae8e6abb/membranes-12-00768-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/f5ea4b2d7a8c/membranes-12-00768-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/72a87c1ead2f/membranes-12-00768-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/2bc38a03a692/membranes-12-00768-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/9515a9d5a005/membranes-12-00768-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/60c00d013449/membranes-12-00768-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/41865a9d3450/membranes-12-00768-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/bfd915b87856/membranes-12-00768-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a35/9414074/335e4d7bb6ec/membranes-12-00768-g013.jpg

相似文献

[1]
Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye.

Membranes (Basel). 2022-8-7

[2]
Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance.

ACS Appl Mater Interfaces. 2019-12-3

[3]
Fabrication of high performance TFN membrane incorporated with graphene oxide via support-free interfacial polymerization.

Sci Total Environ. 2021-11-1

[4]
Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable.

J Colloid Interface Sci. 2018-10-23

[5]
Co-assembly of soluble metal-organic polyhedrons for high-flux thin-film nanocomposite membranes.

J Colloid Interface Sci. 2022-6

[6]
High-Performance Novel MoS@Zeolite X Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance.

ACS Appl Mater Interfaces. 2023-8-23

[7]
Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal-Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection.

ACS Appl Mater Interfaces. 2017-2-17

[8]
TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification; performance and antifouling properties.

J Environ Manage. 2020-8-31

[9]
Micelles regulated thin film nanocomposite membrane with enhanced nanofiltration performance.

J Colloid Interface Sci. 2024-5-15

[10]
Hydrophilic Hollow Nanocube-Functionalized Thin Film Nanocomposite Membrane with Enhanced Nanofiltration Performance.

ACS Appl Mater Interfaces. 2019-1-23

引用本文的文献

[1]
Enhanced enzyme activity and stability through immobilization of recombinant chitinase on sodium alginate-modified rice husk beads for efficient decolorization of synthetic dyes.

J Biol Eng. 2025-8-25

[2]
Polymeric Membranes for Liquid Separation: Innovations in Materials, Fabrication, and Industrial Applications.

Polymers (Basel). 2024-11-22

[3]
Highly Efficient Biosorption of Cationic Dyes via Biopolymeric Adsorbent-Material-Based Pectin Extract Polysaccharide and Carrageenan Grafted to Cellulosic Nonwoven Textile.

Polymers (Basel). 2024-2-21

[4]
Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process.

Membranes (Basel). 2023-6-1

[5]
Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance.

Membranes (Basel). 2023-4-28

[6]
Research Progress and Application of Polyimide-Based Nanocomposites.

Nanomaterials (Basel). 2023-2-8

[7]
Animal Cellulose with Hierarchical Structure Isolated from Tunic as the Basis for High-Performance Pressure-Resistant Nanofiltration Membrane.

Membranes (Basel). 2022-10-6

[8]
Lyophilization of Curcumin-Albumin Nanoplex with Sucrose as Cryoprotectant: Aqueous Reconstitution, Dissolution, Kinetic Solubility, and Physicochemical Stability.

Int J Mol Sci. 2022-10-3

本文引用的文献

[1]
Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH.

RSC Adv. 2018-12-12

[2]
Layer-by-layer assembly of nanocomposite interlayers on a kaolin substrate for enhancing membrane performance of Pb(II) and Cd(II) removal.

Sci Total Environ. 2022-5-10

[3]
Nanofiltration for drinking water treatment: a review.

Front Chem Sci Eng. 2022

[4]
Improvement of Ultrafiltration for Treatment of Phosphorus-Containing Water by a Lanthanum-Modified Aminated Polyacrylonitrile Membrane.

ACS Omega. 2020-3-25

[5]
Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal.

Carbohydr Polym. 2020-3-6

[6]
Preparation of UiO-66-NH and UiO-66-NH/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water.

Ecotoxicol Environ Saf. 2020-3-10

[7]
Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal.

J Environ Manage. 2019-12-13

[8]
An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain.

Mikrochim Acta. 2019-12-9

[9]
The performance of UiO-66-NH/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes.

Chemosphere. 2019-8-7

[10]
UiO-66-NH₂/GO Composite: Synthesis, Characterization and CO₂ Adsorption Performance.

Materials (Basel). 2018-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索