Suppr超能文献

使用人工智能对与代谢结果及全氟和多氟烷基物质暴露相关的潜在不良结局路径进行表征

Characterization of Potential Adverse Outcome Pathways Related to Metabolic Outcomes and Exposure to Per- and Polyfluoroalkyl Substances Using Artificial Intelligence.

作者信息

Kaiser Andreas-Marius, Zare Jeddi Maryam, Uhl Maria, Jornod Florence, Fernandez Mariana F, Audouze Karine

机构信息

Environment Agency Austria, 1090 Vienna, Austria.

National Institute for Public Health and Environment (RIVM), 3721 MA Bilthoven, The Netherlands.

出版信息

Toxics. 2022 Aug 4;10(8):449. doi: 10.3390/toxics10080449.

Abstract

Human exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with numerous adverse health effects, depending on various factors such as the conditions of exposure (dose/concentration, duration, route of exposure, etc.) and characteristics associated with the exposed target (e.g., age, sex, ethnicity, health status, and genetic predisposition). The biological mechanisms by which PFAS might affect systems are largely unknown. To support the risk assessment process, AOP-helpFinder, a new artificial intelligence tool, was used to rapidly and systematically explore all available published information in the PubMed database. The aim was to identify existing associations between PFAS and metabolic health outcomes that may be relevant to support building adverse outcome pathways (AOPs). The collected information was manually organized to investigate linkages between PFAS exposures and metabolic health outcomes, including dyslipidemia, hypertension, insulin resistance, and obesity. Links between PFAS exposure and events from the existing metabolic-related AOPs were also retrieved. In conclusion, by analyzing dispersed information from the literature, we could identify some associations between PFAS exposure and components of existing AOPs. Additionally, we identified some linkages between PFAS exposure and metabolic outcomes for which only sparse information is available or which are not yet present in the AOP-wiki database that could be addressed in future research.

摘要

人类接触全氟和多氟烷基物质(PFAS)已与众多不良健康影响相关联,这取决于多种因素,如接触条件(剂量/浓度、持续时间、接触途径等)以及与接触目标相关的特征(例如年龄、性别、种族、健康状况和遗传易感性)。PFAS可能影响身体系统的生物学机制在很大程度上尚不清楚。为支持风险评估过程,一种新的人工智能工具AOP-helpFinder被用于快速且系统地探索PubMed数据库中所有已发表的可用信息。目的是确定PFAS与代谢健康结果之间可能存在的关联,这些关联可能有助于构建不良结局途径(AOP)。收集到的信息经过人工整理,以研究PFAS暴露与代谢健康结果之间的联系,包括血脂异常、高血压、胰岛素抵抗和肥胖。还检索了PFAS暴露与现有代谢相关AOP中的事件之间的联系。总之,通过分析文献中的分散信息,我们能够确定PFAS暴露与现有AOP组成部分之间的一些关联。此外,我们还确定了PFAS暴露与代谢结果之间的一些联系,对于这些联系,目前仅有稀少信息可用,或者在AOP-wiki数据库中尚未存在,未来的研究可以对其进行探讨。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c1/9412358/89ad7b6ec320/toxics-10-00449-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验