Suppr超能文献

预后性可变剪接事件相关剪接因子定义了肺腺癌的肿瘤微环境和药物基因组学特征。

Prognostic alternative splicing events related splicing factors define the tumor microenvironment and pharmacogenomic landscape in lung adenocarcinoma.

机构信息

Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China.

Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China.

出版信息

Aging (Albany NY). 2022 Aug 24;14(16):6689-6715. doi: 10.18632/aging.204244.

Abstract

BACKGROUND

Recent studies identified correlations between splicing factors (SFs) and tumor progression and therapy. However, the potential roles of SFs in immune regulation and the tumor microenvironment (TME) remain unknown.

METHODS

We used UpSet plots to screen for prognostic-related alternative splicing (AS) events. We evaluated SF patterns in specific immune landscapes. Single sample gene set enrichment analysis (ssGSEA) algorithms were used to quantify relative infiltration levels in immune cell subsets. Principal component analysis (PCA) algorithm-based SFscore were used to evaluate SF patterns in individual tumors with an immune response.

RESULTS

From prognosis-related AS events, 16 prognosis-related SFs were selected to construct three SF patterns. Further TME analyses showed these patterns were highly consistent with immune-inflamed, immune-excluded, and immune-desert landscapes. Based on SFscore constructed using differentially expressed genes (DEGs) between SF patterns, patients were classified into two immune-subtypes associated with differential pharmacogenomic landscapes and cell features. A low SFscore was associated with high immune cell infiltration, high tumor mutation burden (TMB), and elevated expression of immune check points (ICPs), indicating a better immune response.

CONCLUSIONS

SFs are significantly associated with TME remodeling. Evaluating different SF patterns enhances our understanding of the TME and improves effective immunotherapy strategies.

摘要

背景

最近的研究确定了剪接因子(SFs)与肿瘤进展和治疗之间的相关性。然而,SFs 在免疫调节和肿瘤微环境(TME)中的潜在作用仍不清楚。

方法

我们使用 Upset 图筛选与预后相关的剪接事件。我们评估了 SF 在特定免疫景观中的模式。使用单样本基因集富集分析(ssGSEA)算法来量化免疫细胞亚群的相对浸润水平。基于主成分分析(PCA)算法的 SFscore 用于评估具有免疫反应的个体肿瘤中的 SF 模式。

结果

从与预后相关的 AS 事件中,选择了 16 个与预后相关的 SF 来构建三种 SF 模式。进一步的 TME 分析表明,这些模式与免疫浸润、免疫排斥和免疫荒漠景观高度一致。基于 SFscore 构建的 SF 模式之间差异表达基因(DEGs),患者被分为两种与差异药物基因组学景观和细胞特征相关的免疫亚型。低 SFscore 与高免疫细胞浸润、高肿瘤突变负担(TMB)和免疫检查点(ICPs)的高表达相关,表明免疫反应更好。

结论

SFs 与 TME 重塑显著相关。评估不同的 SF 模式可增强我们对 TME 的理解,并改善有效的免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/432e/9467413/6f8c348287a6/aging-14-204244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验