Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2205598119. doi: 10.1073/pnas.2205598119. Epub 2022 Aug 25.
The humoral immune response, a key arm of adaptive immunity, consists of B cells and their products. Upon infection or vaccination, B cells undergo a Darwinian evolutionary process in germinal centers (GCs), resulting in the production of antibodies and memory B cells. We developed a computational model to study how humoral memory is recalled upon reinfection or booster vaccination. We find that upon reexposure to the same antigen, affinity-dependent selective expansion of available memory B cells outside GCs (extragerminal center compartments [EGCs]) results in a rapid response made up of the best available antibodies. Memory B cells that enter secondary GCs can undergo mutation and selection to generate even more potent responses over time, enabling greater protection upon subsequent exposure to the same antigen. GCs also generate a diverse pool of B cells, some with low antigen affinity. These results are consistent with our analyses of data from humans vaccinated with two doses of a COVID-19 vaccine. Our results further show that the diversity of memory B cells generated in GCs is critically important upon exposure to a variant antigen. Clones drawn from this diverse pool that cross-react with the variant are rapidly expanded in EGCs to provide the best protection possible while new secondary GCs generate a tailored response for the new variant. Based on a simple evolutionary model, we suggest that the complementary roles of EGC and GC processes we describe may have evolved in response to complex organisms being exposed to evolving pathogen families for millennia.
体液免疫反应是适应性免疫的一个关键组成部分,由 B 细胞及其产物组成。在感染或接种疫苗后,B 细胞在生发中心(GC)经历达尔文进化过程,产生抗体和记忆 B 细胞。我们开发了一种计算模型来研究体液记忆如何在再次感染或加强接种疫苗时被召回。我们发现,在再次暴露于相同抗原时,可用记忆 B 细胞在 GC 外(生发中心外区 [EGC])的亲和力依赖性选择性扩增会导致快速反应,由最佳可用抗体组成。进入次级 GC 的记忆 B 细胞可以随着时间的推移发生突变和选择,从而产生更有效的反应,在随后暴露于相同抗原时提供更大的保护。GC 还会产生大量具有不同抗原亲和力的 B 细胞。这些结果与我们对接受两剂 COVID-19 疫苗接种的人类数据的分析一致。我们的结果进一步表明,在暴露于变体抗原时,GC 中产生的记忆 B 细胞的多样性至关重要。与变体发生交叉反应的来自这个多样化群体的克隆会在 EGC 中迅速扩增,以提供最佳保护,而新的次级 GC 会针对新的变体生成定制的反应。基于一个简单的进化模型,我们提出,我们描述的 EGC 和 GC 过程的互补作用可能是为了应对复杂生物体数千年来暴露于不断进化的病原体家族而进化的。