Suppr超能文献

开发和验证一种预测算法,以识别在加利福尼亚两个大型卫生系统中结核病发病率较高的国家的分娩情况。

Development and validation of a prediction algorithm to identify birth in countries with high tuberculosis incidence in two large California health systems.

机构信息

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, United States of America.

Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America.

出版信息

PLoS One. 2022 Aug 25;17(8):e0273363. doi: 10.1371/journal.pone.0273363. eCollection 2022.

Abstract

OBJECTIVE

Though targeted testing for latent tuberculosis infection ("LTBI") for persons born in countries with high tuberculosis incidence ("HTBIC") is recommended in health care settings, this information is not routinely recorded in the electronic health record ("EHR"). We develop and validate a prediction model for birth in a HTBIC using EHR data.

MATERIALS AND METHODS

In a cohort of patients within Kaiser Permanente Southern California ("KPSC") and Kaiser Permanent Northern California ("KPNC") between January 1, 2008 and December 31, 2019, KPSC was used as the development dataset and KPNC was used for external validation using logistic regression. Model performance was evaluated using area under the receiver operator curve ("AUCROC") and area under the precision and recall curve ("AUPRC"). We explored various cut-points to improve screening for LTBI.

RESULTS

KPSC had 73% and KPNC had 54% of patients missing country-of-birth information in the EHR, leaving 2,036,400 and 2,880,570 patients with EHR-documented country-of-birth at KPSC and KPNC, respectively. The final model had an AUCROC of 0.85 and 0.87 on internal and external validation datasets, respectively. It had an AUPRC of 0.69 and 0.64 (compared to a baseline HTBIC-birth prevalence of 0.24 at KPSC and 0.19 at KPNC) on internal and external validation datasets, respectively. The cut-points explored resulted in a number needed to screen from 7.1-8.5 persons/positive LTBI diagnosis, compared to 4.2 and 16.8 persons/positive LTBI diagnosis from EHR-documented birth in a HTBIC and current screening criteria, respectively.

DISCUSSION

Using logistic regression with EHR data, we developed a simple yet useful model to predict birth in a HTBIC which decreased the number needed to screen compared to current LTBI screening criteria.

CONCLUSION

Our model improves the ability to screen for LTBI in health care settings based on birth in a HTBIC.

摘要

目的

尽管针对出生于结核病高发国家(“HTBIC”)人群的潜伏性结核感染(“LTBI”)进行靶向检测在医疗机构中是推荐的,但这些信息通常不会在电子健康记录(“EHR”)中记录。我们使用 EHR 数据开发并验证了一种用于预测出生于 HTBIC 的模型。

材料与方法

在 Kaiser Permanente Southern California(“KPSC”)和 Kaiser Permanente Northern California(“KPNC”)于 2008 年 1 月 1 日至 2019 年 12 月 31 日期间的患者队列中,KPSC 被用作开发数据集,KPNC 被用于外部验证,使用逻辑回归。使用接收器操作特征曲线下面积(“AUCROC”)和精度和召回率曲线下面积(“AUPRC”)评估模型性能。我们探索了各种切点以改善 LTBI 的筛查。

结果

KPSC 有 73%的患者和 KPNC 有 54%的患者的 EHR 中缺少出生地信息,因此 KPSC 和 KPNC 分别有 2036400 名和 2880570 名患者的 EHR 中有记录的出生地信息。最终模型在内部和外部验证数据集上的 AUCROC 分别为 0.85 和 0.87。它在内部和外部验证数据集上的 AUPRC 分别为 0.69 和 0.64(与 KPSC 的基线 HTBIC 出生流行率 0.24 和 KPNC 的 0.19 相比)。所探索的切点导致从 7.1-8.5 人/阳性 LTBI 诊断中进行筛查的人数,与从 EHR 记录的 HTBIC 出生和当前筛查标准中分别为 4.2 和 16.8 人/阳性 LTBI 诊断相比有所减少。

讨论

使用 EHR 数据的逻辑回归,我们开发了一种简单但有用的模型来预测 HTBIC 出生,与当前的 LTBI 筛查标准相比,该模型减少了筛查所需的人数。

结论

我们的模型提高了根据 HTBIC 出生情况在医疗机构中筛查 LTBI 的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c031/9409495/9a27e8df5383/pone.0273363.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验