Suppr超能文献

家蚕幼虫血液中细菌识别和丝氨酸蛋白酶级联起始的机制分析。

A mechanistic analysis of bacterial recognition and serine protease cascade initiation in larval hemolymph of Manduca sexta.

机构信息

Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.

Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.

出版信息

Insect Biochem Mol Biol. 2022 Sep;148:103818. doi: 10.1016/j.ibmb.2022.103818. Epub 2022 Aug 23.

Abstract

Serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid defense responses. Previous biochemical studies showed that in hemolymph of a caterpillar, Manduca sexta, recognition of fungi by β-1,3-glucan recognition proteins (βGRP1 and βGRP2) or recognition of bacteria by peptidoglycan recognition protein-1 (PGRP1) and microbe binding protein (MBP) results in autoactivation of hemolymph protease-14 precursor (proHP14). HP14 then activates downstream members of a protease cascade leading to the melanization immune response. ProHP14 has a complex domain architecture, with five low-density lipoprotein receptor class A repeats at its amino terminus, followed by a Sushi domain, a Sushi domain variant called Wonton, and a carboxyl-terminal serine protease catalytic domain. Its zymogen form is activated by specific proteolytic cleavage at the amino-terminal end of the protease domain. While a molecular mechanism for recognition and triggering the response to β-1,3-glucan has been delineated, it is unclear how bacterial recognition stimulates proHP14 activation. To fill this knowledge gap, we expressed the two domains of M. sexta MBP and found that the amino-terminal domain binds to diaminopimelic acid-peptidoglycan (DAP-PG). ProHP14 bound to both the carboxyl-terminal domain (MBP-C) and amino-terminal domain (MBP-N) of MBP. In the mixture of DAP-PG, MBP, and larval plasma, inclusion of an HP14 fragment composed of LDLa repeats 2-5 (LDLa) or MBP-C significantly reduced prophenoloxidase activation, likely by competing with the interactions of the full-length proteins, and suggesting that molecular interactions involving these regions of proHP14 and MBP take part in proHP14 activation in response to peptidoglycan. Using a series of N-terminally truncated versions of proHP14, we found that autoactivation required LDLa. The optimal ratio of PGRP1, MBP, and proHP14 is close to 3:2:1. In summary, proHP14 autoactivation by DAP-type peptidoglycan requires binding of DAP-PG by PGRP1 and the MBP N-terminal domain and association of the LDLa region of proHP14 with the MBP C-terminal domain. These interactions may concentrate the proHP14 zymogen at the bacterial cell wall surface and promote autoactivation.

摘要

丝氨酸蛋白酶级联在脊椎动物和无脊椎动物中进化,以介导快速防御反应。先前的生化研究表明,在毛毛虫 Manduca sexta 的血淋巴中,β-1,3-葡聚糖识别蛋白(βGRP1 和 βGRP2)识别真菌,或肽聚糖识别蛋白-1(PGRP1)和微生物结合蛋白(MBP)识别细菌,导致血淋巴蛋白酶-14 前体(proHP14)的自动激活。HP14 然后激活蛋白酶级联反应的下游成员,导致黑化免疫反应。ProHP14 具有复杂的结构域架构,其氨基末端有五个低密度脂蛋白受体 A 重复序列,后面是 Sushi 结构域、称为 Wonton 的 Sushi 结构域变体和羧基末端丝氨酸蛋白酶催化结构域。其酶原形式通过蛋白酶结构域氨基末端的特异性蛋白水解切割而被激活。虽然已经描述了识别和触发对β-1,3-葡聚糖的反应的分子机制,但尚不清楚细菌识别如何刺激 proHP14 激活。为了填补这一知识空白,我们表达了 M. sexta MBP 的两个结构域,发现氨基末端结构域与二氨基庚二酸-肽聚糖(DAP-PG)结合。ProHP14 与 MBP 的羧基末端结构域(MBP-C)和氨基末端结构域(MBP-N)都结合。在 DAP-PG、MBP 和幼虫血浆的混合物中,包含由 LDLa 重复 2-5 组成的 HP14 片段(LDLa)或 MBP-C 会显著降低原酚氧化酶的激活,可能是通过与全长蛋白的相互作用竞争,这表明涉及 proHP14 和 MBP 这些区域的分子相互作用参与了对肽聚糖的 proHP14 激活。使用一系列 N 端截断版本的 proHP14,我们发现自动激活需要 LDLa。PGRP1、MBP 和 proHP14 的最佳比例接近 3:2:1。总之,DAP 型肽聚糖对 proHP14 的自动激活需要 PGRP1 与 DAP-PG 的结合以及 proHP14 的 MBP N 末端结构域与 MBP C 末端结构域的关联。这些相互作用可能将 proHP14 酶原浓缩在细菌细胞壁表面,并促进自动激活。

相似文献

1
A mechanistic analysis of bacterial recognition and serine protease cascade initiation in larval hemolymph of Manduca sexta.
Insect Biochem Mol Biol. 2022 Sep;148:103818. doi: 10.1016/j.ibmb.2022.103818. Epub 2022 Aug 23.
3
Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta.
Insect Biochem Mol Biol. 2017 Apr;83:35-43. doi: 10.1016/j.ibmb.2016.10.006. Epub 2016 Oct 29.
5
Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13856-61. doi: 10.1073/pnas.1517236112. Epub 2015 Oct 26.
6
The three-dimensional structure and recognition mechanism of Manduca sexta peptidoglycan recognition protein-1.
Insect Biochem Mol Biol. 2019 May;108:44-52. doi: 10.1016/j.ibmb.2019.03.001. Epub 2019 Mar 21.
7
A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta.
J Biol Chem. 2004 Aug 13;279(33):34101-6. doi: 10.1074/jbc.M404584200. Epub 2004 Jun 9.
9
Involvement of Manduca sexta peptidoglycan recognition protein-1 in the recognition of bacteria and activation of prophenoloxidase system.
Insect Biochem Mol Biol. 2010 Jun;40(6):487-95. doi: 10.1016/j.ibmb.2010.04.008. Epub 2010 Apr 21.
10
Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph.
Insect Biochem Mol Biol. 2018 Aug;99:27-36. doi: 10.1016/j.ibmb.2018.05.004. Epub 2018 May 23.

引用本文的文献

2
Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation.
Int J Mol Sci. 2025 Feb 4;26(3):1320. doi: 10.3390/ijms26031320.
3
CLIPA protein pairs function as cofactors for prophenoloxidase activation in Anopheles gambiae.
Insect Biochem Mol Biol. 2025 Feb;177:104254. doi: 10.1016/j.ibmb.2024.104254. Epub 2025 Jan 10.
4
Hemolymph protease-17b activates proHP6 to stimulate melanization and Toll signaling in Manduca sexta.
Insect Biochem Mol Biol. 2024 Nov;174:104193. doi: 10.1016/j.ibmb.2024.104193. Epub 2024 Oct 13.
5
Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan.
Insect Biochem Mol Biol. 2024 May;168:104108. doi: 10.1016/j.ibmb.2024.104108. Epub 2024 Mar 27.
7
An evolutionarily conserved serine protease network mediates melanization and Toll activation in .
Sci Adv. 2023 Dec 22;9(51):eadk2756. doi: 10.1126/sciadv.adk2756. Epub 2023 Dec 20.

本文引用的文献

1
Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, .
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23581-23587. doi: 10.1073/pnas.2004761117. Epub 2020 Sep 8.
2
Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects.
Insect Biochem Mol Biol. 2018 Dec;103:53-69. doi: 10.1016/j.ibmb.2018.10.006. Epub 2018 Oct 24.
3
Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta.
Insect Biochem Mol Biol. 2017 Apr;83:35-43. doi: 10.1016/j.ibmb.2016.10.006. Epub 2016 Oct 29.
4
Serpins in arthropod biology.
Semin Cell Dev Biol. 2017 Feb;62:105-119. doi: 10.1016/j.semcdb.2016.09.001. Epub 2016 Sep 4.
6
Clip-domain serine proteases as immune factors in insect hemolymph.
Curr Opin Insect Sci. 2015 Oct 1;11:47-55. doi: 10.1016/j.cois.2015.09.003.
7
Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13856-61. doi: 10.1073/pnas.1517236112. Epub 2015 Oct 26.
8
Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation.
Biochimie. 2016 Mar;122:255-69. doi: 10.1016/j.biochi.2015.10.007. Epub 2015 Oct 8.
9
Role of mannose-binding lectin in intestinal homeostasis and fungal elimination.
Mucosal Immunol. 2016 May;9(3):767-76. doi: 10.1038/mi.2015.100. Epub 2015 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验