The Research Center for Biomedical Information Technology, SIAT, Shenzhen, China.
The Research Center for Biomedical Information Technology, SIAT, Shenzhen, China.
Prog Mol Biol Transl Sci. 2022;190(1):1-37. doi: 10.1016/bs.pmbts.2022.05.002. Epub 2022 Jul 30.
Achieving predictive, precise, participatory, preventive, and personalized health (abbreviated as p-Health) requires comprehensive evaluations of an individual's conditions captured by various measurement technologies. Since the 1950s, analysis of care providers' and physicians' notes and measurement data by computers to improve healthcare delivery has been termed clinical informatics. Since the 2010s, wide adoptions of Electronic Health Records (EHRs) have greatly improved clinical informatics development with fast growing pervasive wearable technologies that continuously capture the human physiological profile in-clinic (EHRs) and out-of-clinic (PHRs or Personal Health Records) to bolster mobile health (mHealth). In addition, after the Human Genome Project in the 1990s, medical genomics has emerged to capture the high-throughput molecular profile of a person. As a result, integrated data analytics is becoming one of the fast-growing areas under Biomedical Big Data to improve human healthcare outcomes. In this chapter, we first introduce the scope of data integration and review applications, data sources, and tools for clinical informatics and medical genomics. We then describe the data integration analytics at the raw data level, feature level, and decision level with case studies, and the opportunity for research and translation using advanced artificial intelligence (AI), such as deep learning. Lastly, we summarize the opportunities in biomedical big data integration that can reshape healthcare toward p-health.
实现可预测、精准、参与式、预防和个性化的健康(简称 p-Health)需要全面评估个体的状况,这些状况由各种测量技术捕捉。自 20 世纪 50 年代以来,计算机分析护理人员和医生的笔记和测量数据以改善医疗服务,这被称为临床信息学。自 21 世纪 10 年代以来,电子健康记录 (EHR) 的广泛采用极大地促进了临床信息学的发展,同时快速增长的普及可穿戴技术不断在诊室内(EHR)和诊室外(PHR 或个人健康记录)捕捉人体生理特征,以支持移动健康 (mHealth)。此外,在 20 世纪 90 年代人类基因组计划之后,医学基因组学出现了,以捕捉个人的高通量分子特征。因此,综合数据分析正成为生物医学大数据下快速发展的领域之一,以改善人类医疗保健结果。在本章中,我们首先介绍数据集成的范围,并回顾临床信息学和医学基因组学的应用、数据源和工具。然后,我们通过案例研究描述了原始数据级、特征级和决策级的数据集成分析,以及使用先进人工智能(如深度学习)进行研究和转化的机会。最后,我们总结了生物医学大数据集成中的机遇,这些机遇可以将医疗保健重塑为 p-Health。