Suppr超能文献

预测嗜铬细胞瘤和副神经节瘤患者复发和/或转移的临床和病理工具

Clinical and Pathological Tools for Predicting Recurrence and/or Metastasis in Patients with Pheochromocytoma and Paraganglioma.

作者信息

Bima Chiara, Bioletto Fabio, Lopez Chiara, Bollati Martina, Arata Stefano, Procopio Matteo, Gesmundo Iacopo, Ghigo Ezio, Maccario Mauro, Parasiliti-Caprino Mirko

机构信息

Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.

出版信息

Biomedicines. 2022 Jul 28;10(8):1813. doi: 10.3390/biomedicines10081813.

Abstract

Pheochromocytomas and paragangliomas are endocrine tumors belonging to the family of neural crest cell-derived neoplasms. They have an extremely variable clinical course, characterized by a non-negligible percentage of relapse and/or metastasis after radical surgery. To date, there are no reliable methods to predict the metastatic potential of these neoplasms, despite several clinical, molecular, and histopathological factors that have been extensively studied in the literature as predictors of the recurrence and/or metastasis in these neoplasms with different performances and results. In this review, we aimed to discuss and analyze the most important clinical and histopathological tools for predicting recurrence risk in patients affected by pheochromocytomas or paragangliomas. Thus, we compared the main available predictive models, exploring their applications in stratifying patients' risks. In conclusion, we underlined the importance of simple and validated tools to better define disease aggressiveness and establish tailored patients' treatments and follow-ups.

摘要

嗜铬细胞瘤和副神经节瘤是属于神经嵴细胞衍生肿瘤家族的内分泌肿瘤。它们具有极其多变的临床病程,其特征是根治性手术后有不可忽视的复发和/或转移比例。迄今为止,尽管文献中已经广泛研究了多种临床、分子和组织病理学因素作为这些肿瘤复发和/或转移的预测指标,但仍没有可靠的方法来预测这些肿瘤的转移潜能,不同的指标表现和结果各异。在本综述中,我们旨在讨论和分析预测嗜铬细胞瘤或副神经节瘤患者复发风险的最重要临床和组织病理学工具。因此,我们比较了主要可用的预测模型,探讨它们在分层患者风险中的应用。总之,我们强调了简单且经过验证的工具对于更好地定义疾病侵袭性以及制定个性化患者治疗和随访方案的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8192/9404897/201caa901bbf/biomedicines-10-01813-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验