Wang Yule, Taylan Osman, Alkabaa Abdulaziz S, Ahmad Ijaz, Tag-Eldin Elsayed, Nazemi Ehsan, Balubaid Mohammed, Alqabbaa Hanan Saud
School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China.
Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia.
Biology (Basel). 2022 Jul 27;11(8):1125. doi: 10.3390/biology11081125.
Design and implementation of biological neural networks is a vital research field in the neuromorphic engineering. This paper presents LUT-based modeling of the Adaptive Exponential integrate-and-fire (ADEX) model using Nyquist frequency method. In this approach, a continuous term is converted to a discrete term by sampling factor. This new modeling is called N-LUT-ADEX (Nyquist-Look Up Table-ADEX) and is based on accurate sampling of the original ADEX model. Since in this modeling, the high-accuracy matching is achieved, it can exactly reproduce the spiking patterns, which have the same behaviors of the original neuron model. To confirm the N-LUT-ADEX neuron, the proposed model is realized on Virtex-II Field-Programmable Gate Array (FPGA) board for validating the final hardware. Hardware implementation results show the high degree of similarity between the proposed and original models. Furthermore, low-cost and high-speed attributes of our proposed neuron model will be validated. Indeed, the proposed model is capable of reproducing the spiking patterns in terms of low overhead costs and higher frequencies in comparison with the original one. The properties of the proposed model cause can make it a suitable choice for neuromorphic network implementations with reduced-cost attributes.
生物神经网络的设计与实现是神经形态工程学中的一个重要研究领域。本文提出了一种基于奈奎斯特频率方法的、使用查找表(LUT)的自适应指数积分发放(ADEX)模型建模方法。在这种方法中,一个连续项通过采样因子被转换为一个离散项。这种新的建模方法被称为N-LUT-ADEX(奈奎斯特查找表-ADEX),并且基于原始ADEX模型的精确采样。由于在这种建模中实现了高精度匹配,它能够精确地重现尖峰模式,这些尖峰模式具有与原始神经元模型相同的行为。为了验证N-LUT-ADEX神经元,所提出的模型在Virtex-II现场可编程门阵列(FPGA)板上实现,用于验证最终硬件。硬件实现结果表明所提出的模型与原始模型之间具有高度相似性。此外,我们所提出的神经元模型的低成本和高速属性将得到验证。事实上,与原始模型相比,所提出的模型能够以低开销成本和更高频率重现尖峰模式。所提出模型的这些特性使其成为具有低成本属性的神经形态网络实现的合适选择。