Suppr超能文献

利用韩国公共卫生检查数据(2002 - 2017年)建立的高血压和糖尿病预测模型

Prediction Model for Hypertension and Diabetes Mellitus Using Korean Public Health Examination Data (2002-2017).

作者信息

Jeong Yong Whi, Jung Yeojin, Jeong Hoyeon, Huh Ji Hye, Sung Ki-Chul, Shin Jeong-Hun, Kim Hyeon Chang, Kim Jang Young, Kang Dae Ryong

机构信息

Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea.

Department of Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea.

出版信息

Diagnostics (Basel). 2022 Aug 14;12(8):1967. doi: 10.3390/diagnostics12081967.

Abstract

Hypertension and diabetes mellitus are major chronic diseases that are important factors in the management of cardiovascular disease. In order to prevent the occurrence of chronic diseases, proper health management through periodic health check-ups is necessary. The purpose of this study is to determine the incidence of hypertension and diabetes mellitus according to the health check-up, and to develop a predictive model for hypertension and diabetes according to the health check-up. We used the National Health Insurance Corporation database of Korea and checked whether hypertension or diabetes occurred from that date according to the number of health check-ups over the past 10 years. Compared to those who underwent five health check-ups, those who participated in the first screening had hypertension (OR = 2.18, 95% CI = 2.14-2.22), diabetes mellitus (OR = 1.33, 95% CI = 1.30-1.35) and both diseases (OR = 2.46, 95% CI = 2.39-2.53); individuals who underwent 10 screenings had hypertension (OR = 0.86, 95% CI = 0.83-0.88), diabetes mellitus (OR = 0.83, 95% CI = 0.81-0.85) and both diseases (OR = 0.83, 95% CI = 0.79-0.87). Individuals who attended fewer than five screenings compared with individuals who attended five or more screenings had hypertension (OR = 1.61, 95% CI = 1.59-1.62; AUC = 0.66), diabetes mellitus (OR = 1.21, 95% CI = 1.20-1.22; AUC = 0.59) and both diseases (OR = 1.75, 95% CI = 1.72-1.78, AUC = 0.63). The machine learning-based prediction model using XGBoost showed higher performance in all datasets than the conventional logistic regression model in predicting hypertension (accuracy, 0.828 vs. 0.628; F1-score, 0.800 vs. 0.633; AUC, 828 vs. 0.630), diabetes mellitus (accuracy, 0.707 vs. 0.575; F1-score, 0.663 vs. 0.576; AUC, 0.710 vs. 0.575) and both diseases (accuracy, 0.950 vs. 0.612; F1-score, 0.950 vs. 0.614; AUC, 0.952 vs. 0.612). It was found that health check-up had a great influence on the occurrence of hypertension and diabetes, and screening frequency was more important than other factors in the variable importances.

摘要

高血压和糖尿病是主要的慢性疾病,是心血管疾病管理中的重要因素。为预防慢性疾病的发生,通过定期健康检查进行适当的健康管理是必要的。本研究的目的是根据健康检查确定高血压和糖尿病的发病率,并开发基于健康检查的高血压和糖尿病预测模型。我们使用了韩国国民健康保险公团的数据库,根据过去10年的健康检查次数,检查从该日期起是否发生了高血压或糖尿病。与接受5次健康检查的人相比,首次接受筛查的人患有高血压(比值比=2.18,95%置信区间=2.14-2.22)、糖尿病(比值比=1.33,95%置信区间=1.30-1.35)以及两种疾病(比值比=2.46,95%置信区间=2.39-2.53);接受10次筛查的人患有高血压(比值比=0.86,95%置信区间=0.83-0.88)、糖尿病(比值比=0.83,95%置信区间=0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a0f/9407141/8409ffc102b8/diagnostics-12-01967-g001.jpg

相似文献

1
Prediction Model for Hypertension and Diabetes Mellitus Using Korean Public Health Examination Data (2002-2017).
Diagnostics (Basel). 2022 Aug 14;12(8):1967. doi: 10.3390/diagnostics12081967.
2
Association of Participation in Health Check-ups with Risk Factors for Cardiovascular Diseases.
J Korean Med Sci. 2021 Jan 18;36(3):e19. doi: 10.3346/jkms.2021.36.e19.
3
Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme.
Comput Methods Programs Biomed. 2018 Sep;163:39-46. doi: 10.1016/j.cmpb.2018.05.032. Epub 2018 May 29.
8
Prediction models to identify individuals at risk of metabolic syndrome who are unlikely to participate in a health intervention program.
Int J Med Inform. 2018 Mar;111:90-99. doi: 10.1016/j.ijmedinf.2017.12.009. Epub 2017 Dec 30.

引用本文的文献

1
Prognostic risk models for incident hypertension: A PRISMA systematic review and meta-analysis.
PLoS One. 2024 Mar 11;19(3):e0294148. doi: 10.1371/journal.pone.0294148. eCollection 2024.
3
Validation of the Framingham Diabetes Risk Model Using Community-Based KoGES Data.
J Korean Med Sci. 2024 Feb 5;39(5):e47. doi: 10.3346/jkms.2024.39.e47.

本文引用的文献

1
Current Status of the National Health Screening Programs in South Korea.
Korean J Fam Med. 2022 May;43(3):168-173. doi: 10.4082/kjfm.22.0052. Epub 2022 May 20.
3
Changes in Lifestyle Factors After Endoscopic Screening: A Prospective Study in the United States.
Clin Gastroenterol Hepatol. 2022 Jun;20(6):e1240-e1249. doi: 10.1016/j.cgh.2021.07.014. Epub 2021 Jul 10.
4
Epidemiology of cardiovascular disease and its risk factors in Korea.
Glob Health Med. 2021 Jun 30;3(3):134-141. doi: 10.35772/ghm.2021.01008.
5
General Health Checks in Adult Primary Care: A Review.
JAMA. 2021 Jun 8;325(22):2294-2306. doi: 10.1001/jama.2021.6524.
7
Korea hypertension fact sheet 2020: analysis of nationwide population-based data.
Clin Hypertens. 2021 Mar 15;27(1):8. doi: 10.1186/s40885-021-00166-2.
8
Development and Validation of a Deep Learning Based Diabetes Prediction System Using a Nationwide Population-Based Cohort.
Diabetes Metab J. 2021 Jul;45(4):515-525. doi: 10.4093/dmj.2020.0081. Epub 2021 Feb 25.
9
Association of Participation in Health Check-ups with Risk Factors for Cardiovascular Diseases.
J Korean Med Sci. 2021 Jan 18;36(3):e19. doi: 10.3346/jkms.2021.36.e19.
10
Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status.
Diabetes Metab J. 2021 Jan;45(1):1-10. doi: 10.4093/dmj.2020.0254. Epub 2021 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验