Suppr超能文献

论生物认知的内在不稳定性:迈向新的概率模型和统计工具。

On the Inherent Instability of Biocognition: Toward New Probability Models and Statistical Tools.

作者信息

Wallace Rodrick, Leonova Irina, Gochhait Saikat

机构信息

The New York State Psychiatric Institute, 1051 Riverside Dr, New York, NY 10032, USA.

Faculty of Social Sciences, Lobachevsky University, 603950 Nizhny Novgorod, Russia.

出版信息

Entropy (Basel). 2022 Aug 3;24(8):1070. doi: 10.3390/e24081070.

Abstract

A central conundrum enshrouds biocognition: almost all such phenomena are inherently unstable and must be constantly controlled by external regulatory machinery to ensure proper function, in much the same sense that blood pressure and the 'stream of consciousness' require persistent delicate regulation for the survival of higher organisms. Here, we derive the Data Rate Theorem of control theory that characterizes such instability via the Rate Distortion Theorem of information theory for adiabatically stationary nonergodic systems. We then outline a novel approach to building new statistical tools for data analysis based on those theorems, focusing on groupoid symmetry-breaking phase transitions characterized by Fisher Zero analogs.

摘要

生物认知存在一个核心难题

几乎所有此类现象本质上都是不稳定的,必须由外部调节机制不断控制以确保正常功能,这与血压和“意识流”需要持续精细调节以维持高等生物生存的道理大致相同。在此,我们通过信息论的率失真定理推导出控制理论的数据率定理,该定理用于描述绝热静止非遍历系统中的此类不稳定性。然后,我们概述了一种基于这些定理构建新的数据分析统计工具的新颖方法,重点关注以费舍尔零点类似物为特征的广群对称破缺相变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验