Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
Genes (Basel). 2022 Jul 27;13(8):1348. doi: 10.3390/genes13081348.
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.
动态 RNA 变化的高效检测和观察仍然是一个巨大的挑战。然而,近年来荧光应用的不断发展提高了 RNA 成像的效果。在这里,我们从不同方面总结了其中的一些进展。例如,单分子荧光原位杂交(smFISH)可以在亚细胞水平检测低丰度的 RNA。一种相对较新的适体 Mango 被广泛应用于标记和跟踪活细胞中的 RNA 活性。分子信标(MB)可有效定量内源性和外源性 mRNA 和 microRNA(miRNA)。共价结合酶将感兴趣的 RNA(ROI)与荧光基团标记,部分克服了与寡核苷酸合成相关的 RNA 长度限制。与靶 RNA 结合后,强制嵌入(FIT)探针可抵抗核酸酶的降解,用于可视化 mRNA 和信使核糖核蛋白(mRNP)的活性。我们还总结了一些荧光光谱技术在探索 RNA 功能和运动中的重要性。通过将生物素共价连接到 RNA 上,单分子荧光共振能量转移(smFRET)已被用于研究生物分子的动态变化,并专注于染料选择以提高 FRET 效率。此外,还讨论了荧光测定法在药物发现和药物输送中的应用。荧光成像还可以与 RNA 纳米技术结合靶向肿瘤。通过稳态荧光监测配体结合测定和 T 框核酶荧光各向异性测定,也有可能发明针对非编码 RNA(ncRNA)的新型抗菌药物。最近,使用荧光聚集规则间隔短回文重复(CRISPR)技术的 COVID-19 测试已被证明是高效且具有临床意义的。总之,荧光测定在基础和临床研究中都有重要的应用,并将促进 RNA 靶向新药发现的过程,因此值得进一步开发和更新。