文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于单分子计数的荧光生物传感器。

Fluorescent Biosensors Based on Single-Molecule Counting.

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China.

Medical School, Shenzhen University , Shenzhen 518060, China.

出版信息

Acc Chem Res. 2016 Sep 20;49(9):1722-30. doi: 10.1021/acs.accounts.6b00237. Epub 2016 Sep 1.


DOI:10.1021/acs.accounts.6b00237
PMID:27583695
Abstract

Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the fluorescence signals by specific in vitro/in vivo fluorescent labeling, and consequently, the fluorescent molecules indicate the presence of target molecules. The resultant fluorescence signals may be simply counted by either microfluidic device-integrated confocal microscopy or total internal reflection fluorescence-based single-molecule imaging. We have developed a series of single-molecule counting-based biosensors which can be classified as separation-free and separation-assisted assays. As a proof-of-concept, we demonstrate the applications of single-molecule counting-based biosensors for sensitive detection of various target biomolecules such as DNAs, miRNAs, proteins, enzymes, and intact cells, which may function as the disease-related biomarkers. Moreover, we give a summary of future directions to expand the usability of single-molecule counting-based biosensors including (1) the development of more user-friendly and automated instruments, (2) the discovery of new fluorescent labels and labeling strategies, and (3) the introduction of new concepts for the design of novel biosensors. Due to their high sensitivity, good selectivity, rapidity, and simplicity, we believe that the single-molecule counting-based fluorescent biosensors will indubitably find wide applications in biological research, clinical diagnostics, and drug discovery.

摘要

生物传感器在高度敏感、选择性和快速定量特定生物分子方面做出了巨大贡献,尤其在分子诊断方面。然而,传统的生物分子分析方法往往存在灵敏度不足和特异性差的问题。在某些情况下(例如早期疾病诊断),目标生物分子的浓度太低,常规方法无法检测到,并且需要繁琐的步骤来提高检测灵敏度。因此,迫切需要快速和超灵敏的分析工具。在这方面,单分子荧光方法可能很好地满足要求,并为超灵敏生物传感器的发展提供了广阔的前景。令人鼓舞的是,由于过去几十年中单分子显微镜和光谱学的进步,单分子荧光的检测成为现实,极大地推动了高灵敏度生物传感器的发展。通过将目标生物分子与适当的荧光标记物进行体外/体内标记,可以在单分子水平上实现对特定生物分子的定量。与传统的集合测量相比,基于单分子检测的分析方法具有超高灵敏度、良好选择性、快速分析时间和低样品消耗的优点。因此,单分子检测可能有望作为一种理想的分析方法,快速、简单地定量低丰度生物分子。本综述总结了我们在开发基于单分子计数的一系列超灵敏生物传感器方面的努力。单分子计数是单分子检测技术的成员之一,可通过简单地计数单个荧光爆发,用作非常简单和超灵敏的方法来定量目标分子。在荧光传感器中,目标生物分子的信号可以通过特定的体外/体内荧光标记物转化为荧光信号,因此,荧光分子指示目标分子的存在。通过微流控装置集成共焦显微镜或全内反射荧光单分子成像,简单地对产生的荧光信号进行计数。我们已经开发了一系列基于单分子计数的生物传感器,这些传感器可分为无分离和分离辅助检测。作为概念验证,我们展示了基于单分子计数的生物传感器在检测各种目标生物分子(如 DNA、miRNA、蛋白质、酶和完整细胞)方面的应用,这些生物分子可作为疾病相关生物标志物。此外,我们总结了扩展基于单分子计数的生物传感器可用性的未来方向,包括(1)开发更用户友好和自动化的仪器,(2)发现新的荧光标记物和标记策略,以及(3)引入新的概念来设计新型生物传感器。由于其高灵敏度、良好的选择性、快速性和简单性,我们相信基于单分子计数的荧光生物传感器将在生物研究、临床诊断和药物发现中得到广泛应用。

相似文献

[1]
Fluorescent Biosensors Based on Single-Molecule Counting.

Acc Chem Res. 2016-9-1

[2]
Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers.

Acc Chem Res. 2021-1-19

[3]
Nucleic acid amplification-integrated single-molecule fluorescence imaging for and biosensing.

Chem Commun (Camb). 2021-12-14

[4]
Single-Molecule FRET-Based Multiplexed Detection.

Methods Mol Biol. 2024

[5]
Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review.

Anal Chim Acta. 2024-4-15

[6]
Quantum dots and fluorescent protein FRET-based biosensors.

Adv Exp Med Biol. 2012

[7]
Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.

Anal Chim Acta. 2018-12-7

[8]
DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning.

Elife. 2020-11-3

[9]
More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing.

ACS Chem Biol. 2018-2-20

[10]
A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-δ-FeOOH nanoassembly.

Biosens Bioelectron. 2019-12-3

引用本文的文献

[1]
Advancements in Single-Molecule Fluorescence Detection Techniques and Their Expansive Applications in Drug Discovery and Neuroscience.

Biosensors (Basel). 2025-4-30

[2]
Recent Applications and Future Perspectives of Chemiluminescent and Bioluminescent Imaging Technologies.

Chem Biomed Imaging. 2023-4-13

[3]
Digital surface enhanced Raman spectroscopy for quantifiable single molecule detection in flow.

Analyst. 2024-7-8

[4]
Mesoporous Polydopamine-Encapsulated Fluorescent Nanodiamonds: A Versatile Platform for Biomedical Applications.

ACS Appl Mater Interfaces. 2023-7-19

[5]
Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection.

Small. 2023-11

[6]
Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview.

Biosensors (Basel). 2023-1-30

[7]
Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review.

Biosensors (Basel). 2023-1-6

[8]
Advances in optical counting and imaging of micro/nano single-entity reactors for biomolecular analysis.

Anal Bioanal Chem. 2023-1

[9]
Application of Janus Particles in Point-of-Care Testing.

Biosensors (Basel). 2022-8-26

[10]
Hemin-graphene oxide-gold nanoflower-assisted enhanced electrochemiluminescence immunosensor for determination of prostate-specific antigen.

Mikrochim Acta. 2022-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索