Suppr超能文献

鉴定潜在的细胞色素 P450 3A5 抑制剂:通过分子对接、基于负像筛选、机器学习和分子动力学模拟研究的广泛虚拟筛选。

Identification of Potential Cytochrome P450 3A5 Inhibitors: An Extensive Virtual Screening through Molecular Docking, Negative Image-Based Screening, Machine Learning and Molecular Dynamics Simulation Studies.

机构信息

3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India.

3BIGS Co., Ltd., B-831, Geumgang Penterium IX Tower, Hwaseong 18469, Korea.

出版信息

Int J Mol Sci. 2022 Aug 19;23(16):9374. doi: 10.3390/ijms23169374.

Abstract

Cytochrome P450 3A5 (CYP3A5) is one of the crucial CYP family members and has already proven to be an important drug target for cardiovascular diseases. In the current study, the PubChem database was screened through molecular docking and high-affinity molecules were adopted for further assessment. A negative image-based (NIB) model was used for a similarity search by considering the complementary shape and electrostatics of the target and small molecules. Further, the molecules were segregated into active and inactive groups through six machine learning (ML) matrices. The active molecules found in each ML model were used for in silico pharmacokinetics and toxicity assessments. A total of five molecules followed the acceptable pharmacokinetics and toxicity profiles. Several potential binding interactions between the proposed molecules and CYP3A5 were observed. The dynamic behavior of the selected molecules in the CYP3A5 was explored through a molecular dynamics (MD) simulation study. Several parameters obtained from the MD simulation trajectory explained the stability of the protein-ligand complexes in dynamic states. The high binding affinity of each molecule was revealed by the binding free energy calculation through the MM-GBSA methods. Therefore, it can be concluded that the proposed molecules might be potential CYP3A5 molecules for therapeutic application in cardiovascular diseases subjected to in vitro/in vivo validations.

摘要

细胞色素 P450 3A5(CYP3A5)是至关重要的 CYP 家族成员之一,已被证明是心血管疾病的重要药物靶点。在本研究中,通过分子对接筛选 PubChem 数据库,并采用高亲和力分子进行进一步评估。采用基于负像(NIB)的模型通过考虑靶标和小分子的互补形状和静电特性进行相似性搜索。此外,通过六个机器学习(ML)矩阵将分子分为活性和非活性组。在每个 ML 模型中发现的活性分子用于计算机药代动力学和毒性评估。共有 5 种分子符合可接受的药代动力学和毒性特征。观察到拟议分子与 CYP3A5 之间的几种潜在结合相互作用。通过分子动力学(MD)模拟研究探索了所选分子在 CYP3A5 中的动态行为。从 MD 模拟轨迹获得的几个参数解释了蛋白质-配体复合物在动态状态下的稳定性。通过 MM-GBSA 方法计算结合自由能揭示了每个分子的高结合亲和力。因此,可以得出结论,所提出的分子可能是用于心血管疾病治疗应用的潜在 CYP3A5 分子,需要进行体外/体内验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1627/9409045/d0ceb03879b7/ijms-23-09374-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验