Suppr超能文献

用于对系统发育密切相关物种的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)光谱进行分类的机器学习算法

Machine Learning Algorithms for Classification of MALDI-TOF MS Spectra from Phylogenetically Closely Related Species , and .

作者信息

Dematheis Flavia, Walter Mathias C, Lang Daniel, Antwerpen Markus, Scholz Holger C, Pfalzgraf Marie-Theres, Mantel Enrico, Hinz Christin, Wölfel Roman, Zange Sabine

机构信息

Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.

Robert Koch Institut (RKI), Centre for Biological Threats and Special Pathogens, Seestr. 10, 13353 Berlin, Germany.

出版信息

Microorganisms. 2022 Aug 17;10(8):1658. doi: 10.3390/microorganisms10081658.

Abstract

(1) Background: MALDI-TOF mass spectrometry (MS) is the gold standard for microbial fingerprinting, however, for phylogenetically closely related species, the resolution power drops down to the genus level. In this study, we analyzed MALDI-TOF spectra from 44 strains of , and to identify the optimal classification method within popular supervised and unsupervised machine learning (ML) algorithms. (2) Methods: A consensus feature selection strategy was applied to pinpoint from among the 500 MS features those that yielded the best ML model and that may play a role in species differentiation. Unsupervised -means and hierarchical agglomerative clustering were evaluated using the silhouette coefficient, while the supervised classifiers Random Forest, Support Vector Machine, Neural Network, and Multinomial Logistic Regression were explored in a fine-tuning manner using nested -fold cross validation (CV) with a feature reduction step between the two CV loops. (3) Results: Sixteen differentially expressed peaks were identified and used to feed ML classifiers. Unsupervised and optimized supervised models displayed excellent predictive performances with 100% accuracy. The suitability of the consensus feature selection strategy for learning system accuracy was shown. (4) Conclusion: A meaningful ML approach is here introduced, to enhance spp. classification using MALDI-TOF MS data.

摘要

(1) 背景:基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)是微生物指纹识别的金标准,然而,对于系统发育关系密切的物种,其分辨能力降至属水平。在本研究中,我们分析了44株[具体物种未给出]、[具体物种未给出]和[具体物种未给出]的MALDI-TOF光谱,以确定流行的监督和无监督机器学习(ML)算法中的最佳分类方法。(2) 方法:应用一种共识特征选择策略,从500个质谱特征中找出能产生最佳ML模型且可能在物种分化中起作用的特征。使用轮廓系数评估无监督的K均值聚类和层次凝聚聚类,同时使用嵌套的k折交叉验证(CV)并在两个CV循环之间进行特征约简步骤,以微调方式探索监督分类器随机森林、支持向量机、神经网络和多项逻辑回归。(3) 结果:鉴定出16个差异表达峰并用于输入ML分类器。无监督和优化的监督模型显示出优异的预测性能,准确率达100%。显示了共识特征选择策略对学习系统准确性的适用性。(4) 结论:本文引入了一种有意义的ML方法,以利用MALDI-TOF MS数据增强[具体物种未给出]属物种的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/9416640/daeb3bd7cb8f/microorganisms-10-01658-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验