MSDeepAMR:基于深度神经网络和迁移学习的抗菌药物耐药性预测
MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning.
作者信息
López-Cortés Xaviera A, Manríquez-Troncoso José M, Hernández-García Ruber, Peralta Daniel
机构信息
Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile.
Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, Chile.
出版信息
Front Microbiol. 2024 Apr 17;15:1361795. doi: 10.3389/fmicb.2024.1361795. eCollection 2024.
INTRODUCTION
Antimicrobial resistance (AMR) is a global health problem that requires early and effective treatments to prevent the indiscriminate use of antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS), and more particularly MALDI-TOF, have been widely adopted by routine clinical microbiology laboratories to identify bacterial species and detect AMR. The analysis of AMR with deep learning is still recent, and most models depend on filters and preprocessing techniques manually applied on spectra.
METHODS
This study propose a deep neural network, MSDeepAMR, to learn from raw mass spectra to predict AMR. MSDeepAMR model was implemented for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under different antibiotic resistance profiles. Additionally, a transfer learning test was performed to study the benefits of adapting the previously trained models to external data.
RESULTS
MSDeepAMR models showed a good classification performance to detect antibiotic resistance. The AUROC of the model was above 0.83 in most cases studied, improving the results of previous investigations by over 10%. The adapted models improved the AUROC by up to 20% when compared to a model trained only with external data.
DISCUSSION
This study demonstrate the potential of the MSDeepAMR model to predict antibiotic resistance and their use on external MS data. This allow the extrapolation of the MSDeepAMR model to de used in different laboratories that need to study AMR and do not have the capacity for an extensive sample collection.
引言
抗菌药物耐药性(AMR)是一个全球性的健康问题,需要早期有效的治疗方法来防止抗菌药物的滥用以及感染的发生。质谱分析法(MS),尤其是基质辅助激光解吸电离飞行时间质谱(MALDI-TOF),已被临床微生物学常规实验室广泛采用,用于鉴定细菌种类和检测抗菌药物耐药性。利用深度学习分析抗菌药物耐药性的研究尚属最新进展,且大多数模型依赖于人工应用于光谱的滤波器和预处理技术。
方法
本研究提出一种深度神经网络MSDeepAMR,用于从原始质谱中学习以预测抗菌药物耐药性。针对不同抗生素耐药谱的大肠杆菌、肺炎克雷伯菌和金黄色葡萄球菌实施了MSDeepAMR模型。此外,还进行了迁移学习测试,以研究将先前训练的模型应用于外部数据的益处。
结果
MSDeepAMR模型在检测抗生素耐药性方面表现出良好的分类性能。在大多数研究案例中,该模型的曲线下面积(AUROC)高于0.83,比之前的研究结果提高了10%以上。与仅使用外部数据训练的模型相比,经过调整的模型将AUROC提高了20%。
讨论
本研究证明了MSDeepAMR模型在预测抗生素耐药性及其在外部质谱数据中的应用潜力。这使得MSDeepAMR模型能够推广应用于不同的实验室,这些实验室需要研究抗菌药物耐药性,但没有能力进行广泛的样本采集。