Suppr超能文献

超声空化作用下细流道内固体颗粒运动特性研究

Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation.

作者信息

Yuan Mu, Li Chen, Ge Jiangqin, Xu Qingduo, Li Zhian

机构信息

College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Micromachines (Basel). 2022 Jul 28;13(8):1196. doi: 10.3390/mi13081196.

Abstract

Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.

摘要

微通道中由空化效应产生的微射流会在超声条件下影响微通道中固体颗粒的运动轨迹。通过模拟获得了观测实验的最佳参数,并设计了实验来验证这些参数。当空化气泡在近壁区域坍塌时,微通道中的固体颗粒可沿预期的运动轨迹发生位移。使用 fluent 软件模拟气泡坍塌过程可以看出,当超声声压作用于壁面附近的气泡时,压力会使气泡壁顶部向内凹陷,最终穿透气泡壁底部,形成高速微射流。射流的最大速度可达近 28 米/秒,气泡顶部附近的液体也会高速运动,带动液体中的颗粒朝向壁面移动。使用高速摄像机观察水中气泡的超声空化过程以验证模拟结果。有超声波和无超声波时颗粒运动的对比证明了利用超声空化效应引导小颗粒朝向壁面的可行性。该方法为改变微通道中的流体层状态和提高精密加工提供了新的实验依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb4d/9412600/a6dba6368894/micromachines-13-01196-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验