Croitoriu Alexandra, Nita Loredana Elena, Rusu Alina Gabriela, Ghilan Alina, Bercea Maria, Chiriac Aurica P
"Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
Polymers (Basel). 2022 Aug 17;14(16):3354. doi: 10.3390/polym14163354.
One of the methods of obtaining supramolecular gels consists of the possibility of self-assembly of low molecular weight gelators (LMWGs). However, LMWG-based gels are often difficult to handle, easy to destroy and have poor rheological performance. In order to improve the gels’ properties, the LMWGs molecules are co-assembled, which induces more cross-links with more stable structures. Starting from these aspects, the present study refers to the preparation of a bionic hydrogel stabilized with a physiologically occurring, bifunctional biomolecule, L-lysine, co-assembled with other amino acids or peptides (such as a modified amino acid (Fmoc-serine or Fmoc-glutamic acid) or a tripeptide (Fmoc-Gly-Gly-Gly)) with the potential to support the repair of injuries or the age-related impaired structures or functions of living tissues. The introduction of a copartner aims to improve hydrogel characteristics from a morphological, rheological and structural point of view. On the other hand, the process will allow the understanding of the phenomenon of specific self-association and molecular recognition. Various characterization techniques were used to assess the ability to co-assemble: DLS, FT-IR, SEM and fluorescence microscopy, rheology and thermal analysis. Studies have confirmed that the supramolecular structure occurs through the formation of inter- and intramolecular physical bonds that ensure the formation of fibrils organized into 3D networks. The rheological data, namely the G′ > G″ and tan δ approximately 0.1−0.2 gel-like behavior observed for all studied samples, demonstrate and sustain the appearance of the co-assembly processes and the ability of the samples to act as LMWG. From the studied systems, the Fmoc−Lys−Fmoc_ Fmoc−Glu sample presented the best rheological characteristics that are consistent with the observations that resulted from the dichroism, fluorescence and SEM investigations.
获得超分子凝胶的方法之一是低分子量凝胶剂(LMWG)自组装的可能性。然而,基于LMWG的凝胶通常难以处理,容易破坏且流变性能较差。为了改善凝胶的性能,LMWG分子会进行共组装,从而诱导形成更多具有更稳定结构的交联。从这些方面出发,本研究涉及制备一种仿生水凝胶,该水凝胶由生理上存在的双功能生物分子L-赖氨酸与其他氨基酸或肽(如修饰氨基酸(Fmoc-丝氨酸或Fmoc-谷氨酸)或三肽(Fmoc-Gly-Gly-Gly))共同组装而成,具有支持修复损伤或与年龄相关的受损组织结构或功能的潜力。引入共组装伙伴旨在从形态、流变和结构角度改善水凝胶特性。另一方面,该过程将有助于理解特定自缔合和分子识别现象。使用了各种表征技术来评估共组装能力:动态光散射(DLS)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)和荧光显微镜、流变学和热分析。研究证实,超分子结构是通过分子间和分子内物理键的形成而产生的,这些键确保了形成组织成三维网络的纤维。流变学数据,即所有研究样品观察到的G′>G″以及tanδ约为0.1 - 0.2的凝胶状行为,证明并支持了共组装过程的出现以及样品作为LMWG的能力。在所研究的体系中,Fmoc-Lys-Fmoc_Fmoc-Glu样品呈现出最佳的流变特性,这与二色性、荧光和SEM研究的结果一致。