Suppr超能文献

基于深度学习的大数据环境下金融危机预测模型的高效异常检测

An Efficient Outlier Detection with Deep Learning-Based Financial Crisis Prediction Model in Big Data Environment.

机构信息

Department of Computer Science and Engineering, BVC College of Engineering, Rajahmundry, East Godavari District, Andhra Pradesh, India.

Kongunadu College of Engineering and Technology, Thottiam, Tamilnadu, India.

出版信息

Comput Intell Neurosci. 2022 Aug 16;2022:4948947. doi: 10.1155/2022/4948947. eCollection 2022.

Abstract

As Big Data, Internet of Things (IoT), cloud computing (CC), and other ideas and technologies are combined for social interactions. Big data technologies improve the treatment of financial data for businesses. At present, an effective tool can be used to forecast the financial failures and crises of small and medium-sized enterprises. Financial crisis prediction (FCP) plays a major role in the country's economic phenomenon. Accurate forecasting of the number and probability of failure is an indication of the development and strength of national economies. Normally, distinct approaches are planned for an effective FCP. Conversely, classifier efficiency and predictive accuracy and data legality could not be optimal for practical application. In this view, this study develops an oppositional ant lion optimizer-based feature selection with a machine learning-enabled classification (OALOFS-MLC) model for FCP in a big data environment. For big data management in the financial sector, the Hadoop MapReduce tool is used. In addition, the presented OALOFS-MLC model designs a new OALOFS algorithm to choose an optimal subset of features which helps to achieve improved classification results. In addition, the deep random vector functional links network (DRVFLN) model is used to perform the grading process. Experimental validation of the OALOFS-MLC approach was conducted using a baseline dataset and the results demonstrated the supremacy of the OALOFS-MLC algorithm over recent approaches.

摘要

随着大数据、物联网 (IoT)、云计算 (CC) 等理念和技术的融合,用于社会互动。大数据技术提高了企业对金融数据的处理能力。目前,可以使用一种有效的工具来预测中小企业的财务失败和危机。金融危机预测 (FCP) 在国家经济现象中起着重要作用。准确预测失败的数量和概率是国家经济发展和实力的标志。通常,为了进行有效的 FCP,会计划采用不同的方法。然而,对于实际应用,分类器的效率、预测准确性和数据合法性可能无法达到最优。有鉴于此,本研究在大数据环境下,开发了一种基于对立蚂蚁狮优化器的特征选择和机器学习分类 (OALOFS-MLC) 模型,用于 FCP。针对金融领域的大数据管理,使用了 Hadoop MapReduce 工具。此外,所提出的 OALOFS-MLC 模型设计了一种新的 OALOFS 算法来选择最佳的特征子集,有助于实现改进的分类结果。此外,还使用深度随机向量功能链接网络 (DRVFLN) 模型来执行分级过程。通过使用基准数据集对 OALOFS-MLC 方法进行了实验验证,结果表明 OALOFS-MLC 算法优于最新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5921/9398728/8be0ea64c23a/CIN2022-4948947.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验