Suppr超能文献

功能化九硅化物[SiR]锌蒂簇合物:一类新型的超卤素。

Functionalized nona-silicide [SiR] Zintl clusters: a new class of superhalogens.

作者信息

Sinha Swapan, Jena Puru, Giri Santanab

机构信息

School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.

Maulana Abul Kalam Azad University of Technology, Haringhata, 741249, India.

出版信息

Phys Chem Chem Phys. 2022 Sep 14;24(35):21105-21111. doi: 10.1039/d2cp02619h.

Abstract

Superatoms, due to their various applications in redox and materials chemistry, have been a major topic of study in cluster science. Superhalogens constitute a special class of superatoms that mimic the chemistry of halogens and serve as building blocks of novel materials such as super and hyper salts, perovskite-based solar cells, solid-state electrolytes, and ferroelectric materials. These applications have led to a constant search for new class of superhalogens. In this study, using density functional theory, we show that recently synthesized [Si{Si (Bu)H}] and [Si{Si (TMS)}] Zintl clusters not only behave like halogens but also when functionalized with suitable ligands exhibit superhalogen characteristics. Frontier molecular orbital (FMO) analyses give insights into the electron-accepting nature of the Zintl clusters. Additional bonding techniques such as energy density at the bond critical point (BCP) and adaptive natural density partitioning (AdNDP) gives complementary information about the nature of bonding in Si-based Zintl clusters. The potential of these Zintl clusters in the synthesis of new electrolytes in Li-ion batteries is also investigated.

摘要

由于超原子在氧化还原和材料化学中的各种应用,它们一直是团簇科学研究的主要课题。超卤素构成了一类特殊的超原子,它们模拟卤素的化学性质,并作为新型材料的构建单元,如超盐和超酸盐、钙钛矿基太阳能电池、固态电解质和铁电材料。这些应用促使人们不断寻找新型超卤素。在本研究中,我们使用密度泛函理论表明,最近合成的[Si{Si (Bu)H}]和[Si{Si (TMS)}]齐特耳簇不仅表现得像卤素,而且在用合适的配体官能化时还表现出超卤素特性。前沿分子轨道(FMO)分析揭示了齐特耳簇的电子接受性质。诸如键临界点(BCP)处的能量密度和自适应自然密度划分(AdNDP)等额外的键合技术提供了关于硅基齐特耳簇键合性质的补充信息。我们还研究了这些齐特耳簇在锂离子电池新型电解质合成中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验