Suppr超能文献

基于脑连接学习的脑电信号自动癫痫发作识别。

Automatic Seizure Identification from EEG Signals Based on Brain Connectivity Learning.

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China.

School of Electronic and Information Engineering, Department of Physics, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China.

出版信息

Int J Neural Syst. 2022 Nov;32(11):2250050. doi: 10.1142/S0129065722500502. Epub 2022 Aug 26.

Abstract

Epilepsy is a neurological disorder caused by brain dysfunction, which could cause uncontrolled behavior, loss of consciousness and other hazards. Electroencephalography (EEG) is an indispensable auxiliary tool for clinical diagnosis. Great progress has been made by current seizure identification methods. However, the performance of the methods on different patients varies a lot. In order to deal with this problem, we propose an automatic seizure identification method based on brain connectivity learning. The connectivity of different brain regions is modeled by a graph. Different from the manually defined graph structure, our method can extract the optimal graph structure and EEG features in an end-to-end manner. Combined with the popular graph attention neural network (GAT), this method achieves high performance and stability on different patients from the CHB-MIT dataset. The average values of accuracy, sensitivity, specificity, F1-score and AUC of the proposed model are 98.90%, 98.33%, 98.48%, 97.72% and 98.54%, respectively. The standard deviations of the above five indicators are 0.0049, 0.0125, 0.0116 and 0.0094, respectively. Compared with the existing seizure identification methods, the stability of the proposed model is improved by 78-95%.

摘要

癫痫是一种由大脑功能障碍引起的神经系统疾病,可能导致不受控制的行为、失去意识等危险。脑电图(EEG)是临床诊断不可或缺的辅助工具。目前的癫痫识别方法已经取得了很大的进展。然而,这些方法在不同患者身上的性能差异很大。为了解决这个问题,我们提出了一种基于脑连接学习的自动癫痫识别方法。不同脑区的连接通过图来建模。与手动定义的图结构不同,我们的方法可以端到端地提取最佳的图结构和 EEG 特征。结合流行的图注意神经网络(GAT),该方法在来自 CHB-MIT 数据集的不同患者上实现了高性能和高稳定性。所提出模型的准确性、敏感度、特异性、F1 分数和 AUC 的平均值分别为 98.90%、98.33%、98.48%、97.72%和 98.54%。上述五个指标的标准差分别为 0.0049、0.0125、0.0116 和 0.0094。与现有的癫痫识别方法相比,所提出模型的稳定性提高了 78-95%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验