Suppr超能文献

结合时间和空间注意力进行癫痫发作预测。

Combining temporal and spatial attention for seizure prediction.

作者信息

Wang Yao, Shi Yufei, He Zhipeng, Chen Ziyi, Zhou Yi

机构信息

School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 Guangdong China.

Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.

出版信息

Health Inf Sci Syst. 2023 Aug 23;11(1):38. doi: 10.1007/s13755-023-00239-6. eCollection 2023 Dec.

Abstract

PURPOSE

Approximately 1% of the world population is currently suffering from epilepsy. Successful seizure prediction is necessary for those patients. Influenced by neurons in their own and surrounding locations, the electroencephalogram (EEG) signals collected by scalp electrodes carry information of spatiotemporal interactions. Therefore, it is a great challenge to exploit the spatiotemporal information of EEG signals fully.

METHODS

In this paper, a new seizure prediction model called Gatformer is proposed by fusing the graph attention network (GAT) and the Transformer. The temporal and spatial attention are combined to extract EEG information from the perspective of spatiotemporal interactions. The model aims to explore the temporal dependence of single-channel EEG signals and the spatial correlations among multi-channel EEG signals. It can automatically identify the most noteworthy interaction in brain regions and achieve accurate seizure prediction.

RESULTS

Compared with the baseline models, the performance of our model is significantly improved. The false prediction rate (FPR) on the private dataset is 0.0064/h. The average accuracy, specificity and sensitivity are 98.25%, 99.36% and 97.65%.

CONCLUSION

The proposed model is comparable to the state of the arts. Experiments on different datasets show that it has good robustness and generalization performance. The high sensitivity and low FPR prove that this model has great potential to realize clinical assistance for diagnosis and treatment.

摘要

目的

目前全球约1%的人口患有癫痫。对于这些患者来说,成功的癫痫发作预测是必要的。受自身及周围位置神经元的影响,头皮电极采集的脑电图(EEG)信号携带时空相互作用信息。因此,充分利用EEG信号的时空信息是一项巨大挑战。

方法

本文提出了一种名为Gatformer的新型癫痫发作预测模型,该模型融合了图注意力网络(GAT)和Transformer。将时间注意力和空间注意力相结合,从时空相互作用的角度提取EEG信息。该模型旨在探索单通道EEG信号的时间依赖性以及多通道EEG信号之间的空间相关性。它能够自动识别大脑区域中最值得关注的相互作用,并实现准确的癫痫发作预测。

结果

与基线模型相比,我们模型的性能有显著提高。在私有数据集上的误预测率(FPR)为0.0064/小时。平均准确率、特异性和灵敏度分别为98.25%、99.36%和97.65%。

结论

所提出的模型与现有技术相当。在不同数据集上的实验表明,它具有良好的鲁棒性和泛化性能。高灵敏度和低FPR证明该模型在实现临床诊断和治疗辅助方面具有巨大潜力。

相似文献

1
Combining temporal and spatial attention for seizure prediction.结合时间和空间注意力进行癫痫发作预测。
Health Inf Sci Syst. 2023 Aug 23;11(1):38. doi: 10.1007/s13755-023-00239-6. eCollection 2023 Dec.
2
Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG.基于 EEG 的时空特征融合的癫痫发作预测。
Int J Neural Syst. 2024 Aug;34(8):2450041. doi: 10.1142/S0129065724500412. Epub 2024 May 22.
10
Epileptic Seizure Prediction Using Deep Transformer Model.基于深度Transformer 模型的癫痫发作预测。
Int J Neural Syst. 2022 Feb;32(2):2150058. doi: 10.1142/S0129065721500581. Epub 2021 Oct 30.

本文引用的文献

8
9
Epileptic Seizure Prediction Using Deep Transformer Model.基于深度Transformer 模型的癫痫发作预测。
Int J Neural Syst. 2022 Feb;32(2):2150058. doi: 10.1142/S0129065721500581. Epub 2021 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验