Suppr超能文献

使用免费软件对黑质中多巴胺能免疫染色神经元进行自动定量。

Automated quantification of dopaminergic immunostained neurons in substantia nigra using freely available software.

机构信息

Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Mendoza, Huarpes 630, 5500, Mendoza, Argentina.

Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Universidad Nacional de Cuyo, at Av. Dr. Adrián Ruiz Leal, 5500, Mendoza, Argentina.

出版信息

Med Biol Eng Comput. 2022 Oct;60(10):2995-3007. doi: 10.1007/s11517-022-02643-8. Epub 2022 Aug 26.

Abstract

Computerized techniques for image analysis are critical for progress in cell biology. The complexity of the data in current methods eliminates the need for manual image analysis and usually requires the application of multiple algorithms sequentially to the images. Our aim was to develop a software for immunohistochemical analysis of brain dopaminergic neurons combining several computational approaches to automatically analyze and quantify their number in the substantia nigra after a neurotoxic injury. For this purpose, we used a Parkinson's disease animal model to test our application. The dopaminergic neurotoxin, 6-hydroxydopamine, was administered in adult male rats to damage dopaminergic neurons in substantia nigra and to induce hemiparkinsonism. The lesion was corroborated by behavioral evaluation in response to apomorphine and amphetamine. The animals were euthanized and their brains processed for tyrosine hydroxylase immunohistochemistry for dopamine neuron identification. Neurons positive for tyrosine hydroxylase were evaluated in substantia nigra by light microscopy. The images were used to show quantification applicability. To test our software counting accuracy and validity, automatic dopamine neuron number was correlated with the data obtained by three independent observers. Several parameters were used to depict neuronal function in dataset images from control and lesioned brains. In conclusion, we could perform an automated quantification of dopaminergic neurons and corroborate the validity and accuracy of a freely available software.

摘要

计算机化的图像分析技术对于细胞生物学的发展至关重要。当前方法中数据的复杂性排除了手动图像分析的必要性,并且通常需要将多个算法依次应用于图像。我们的目的是开发一种用于脑多巴胺能神经元免疫组织化学分析的软件,该软件结合了几种计算方法,可自动分析和量化神经毒性损伤后黑质中多巴胺能神经元的数量。为此,我们使用帕金森病动物模型来测试我们的应用。多巴胺神经毒素 6-羟多巴胺被施用于成年雄性大鼠中,以损伤黑质中的多巴胺能神经元并诱导偏侧帕金森病。多巴胺能神经元的损伤通过阿扑吗啡和安非他命的行为评估得到证实。动物被安乐死,其大脑进行酪氨酸羟化酶免疫组织化学处理以鉴定多巴胺神经元。通过光镜评估黑质中酪氨酸羟化酶阳性的神经元。这些图像用于展示定量应用。为了测试我们的软件计数的准确性和有效性,自动多巴胺神经元数量与三位独立观察者获得的数据相关联。使用了几个参数来描述来自对照和损伤大脑的数据集图像中的神经元功能。总之,我们可以对多巴胺能神经元进行自动定量,并证实一种免费可用软件的有效性和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验