Suppr超能文献

一种无创血糖监测系统原型的开发:初步研究。

Development of a Noninvasive Blood Glucose Monitoring System Prototype: Pilot Study.

作者信息

Valero Maria, Pola Priyanka, Falaiye Oluwaseyi, Ingram Katherine H, Zhao Liang, Shahriar Hossain, Ahamed Sheikh Iqbal

机构信息

Department of Information Technology, Kennesaw State University, Marietta, GA, United States.

Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA, United States.

出版信息

JMIR Form Res. 2022 Aug 26;6(8):e38664. doi: 10.2196/38664.

Abstract

BACKGROUND

Diabetes mellitus is a severe disease characterized by high blood glucose levels resulting from dysregulation of the hormone insulin. Diabetes is managed through physical activity and dietary modification and requires careful monitoring of blood glucose concentration. Blood glucose concentration is typically monitored throughout the day by analyzing a sample of blood drawn from a finger prick using a commercially available glucometer. However, this process is invasive and painful, and leads to a risk of infection. Therefore, there is an urgent need for noninvasive, inexpensive, novel platforms for continuous blood sugar monitoring.

OBJECTIVE

Our study aimed to describe a pilot test to test the accuracy of a noninvasive glucose monitoring prototype that uses laser technology based on near-infrared spectroscopy.

METHODS

Our system is based on Raspberry Pi, a portable camera (Raspberry Pi camera), and a visible light laser. The Raspberry Pi camera captures a set of images when a visible light laser passes through skin tissue. The glucose concentration is estimated by an artificial neural network model using the absorption and scattering of light in the skin tissue. This prototype was developed using TensorFlow, Keras, and Python code. A pilot study was run with 8 volunteers that used the prototype on their fingers and ears. Blood glucose values obtained by the prototype were compared with commercially available glucometers to estimate accuracy.

RESULTS

When using images from the finger, the accuracy of the prototype is 79%. Taken from the ear, the accuracy is attenuated to 62%. Though the current data set is limited, these results are encouraging. However, three main limitations need to be addressed in future studies of the prototype: (1) increase the size of the database to improve the robustness of the artificial neural network model; (2) analyze the impact of external factors such as skin color, skin thickness, and ambient temperature in the current prototype; and (3) improve the prototype enclosure to make it suitable for easy finger and ear placement.

CONCLUSIONS

Our pilot study demonstrates that blood glucose concentration can be estimated using a small hardware prototype that uses infrared images of human tissue. Although more studies need to be conducted to overcome limitations, this pilot study shows that an affordable device can be used to avoid the use of blood and multiple finger pricks for blood glucose monitoring in the diabetic population.

摘要

背景

糖尿病是一种严重疾病,其特征是由于激素胰岛素调节失调导致血糖水平升高。糖尿病通过体育活动和饮食调整进行管理,并且需要仔细监测血糖浓度。血糖浓度通常通过使用市售血糖仪分析从手指刺血采集的血样在一天中进行监测。然而,这个过程具有侵入性且会带来疼痛,还会导致感染风险。因此,迫切需要用于连续血糖监测的非侵入性、低成本的新型平台。

目的

我们的研究旨在描述一项试点测试,以检验一种基于近红外光谱激光技术的非侵入性血糖监测原型的准确性。

方法

我们的系统基于树莓派、一个便携式摄像头(树莓派摄像头)和一个可见光激光器。当可见光激光器穿过皮肤组织时,树莓派摄像头捕捉一组图像。利用人工神经网络模型通过光在皮肤组织中的吸收和散射来估计葡萄糖浓度。这个原型是使用TensorFlow、Keras和Python代码开发的。对8名志愿者进行了一项试点研究,他们在手指和耳朵上使用该原型。将原型获得的血糖值与市售血糖仪进行比较以评估准确性。

结果

使用来自手指的图像时,原型的准确率为79%。从耳朵获取图像时,准确率降至62%。尽管当前数据集有限,但这些结果令人鼓舞。然而,在该原型未来的研究中需要解决三个主要限制:(1)增加数据库规模以提高人工神经网络模型的稳健性;(2)分析当前原型中诸如肤色、皮肤厚度和环境温度等外部因素的影响;(3)改进原型外壳使其适合于方便地放置在手指和耳朵上。

结论

我们的试点研究表明,可以使用一个利用人体组织红外图像的小型硬件原型来估计血糖浓度。尽管需要进行更多研究来克服限制,但这项试点研究表明,一种经济实惠的设备可用于避免糖尿病患者群体在血糖监测中使用血液和多次手指刺血。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1290/9463623/8e59cd05bdc3/formative_v6i8e38664_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验