Billington David, Riordan Edward, Salman Majdi, Margineda Daniel, Gill George J W, Cottrell Stephen P, McKenzie Iain, Lancaster Tom, Graf Michael J, Giblin Sean R
School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Cardiff CF24 3AA, United Kingdom.
ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom.
Phys Rev Lett. 2022 Aug 12;129(7):077201. doi: 10.1103/PhysRevLett.129.077201.
Entangled spin states are created by implanting muons into single-crystal LiY_{0.95}Ho_{0.05}F_{4} to form a cluster of correlated, dipole-coupled local magnetic moments. The resulting states have well-defined energy levels allowing experimental manipulation of the state populations by electromagnetic excitation. Experimental control of the evolution of the muon spin polarization is demonstrated through application of continuous, radio-frequency electromagnetic excitation fields. A semiclassical model of quantum, dipole-coupled spins interacting with a classical, oscillating magnetic field accounts for the muon spin evolution. On application of the excitation field, this model shows how changes in the state populations lead to the experimentally observed effects, thus enabling a spectroscopic probe of entangled spin states with muons.
通过将μ子注入单晶LiY₀.₉₅Ho₀.₀₅F₄中形成一组相关的、偶极耦合的局部磁矩,从而产生纠缠自旋态。所产生的状态具有明确的能级,允许通过电磁激发对状态布居进行实验操控。通过施加连续的射频电磁激发场,证明了对μ子自旋极化演化的实验控制。一个量子、偶极耦合自旋与经典振荡磁场相互作用的半经典模型解释了μ子自旋的演化。在施加激发场时,该模型展示了状态布居的变化如何导致实验观测到的效应,从而实现了用μ子对纠缠自旋态进行光谱探测。