Lafuente-Bartolome Jon, Lian Chao, Sio Weng Hong, Gurtubay Idoia G, Eiguren Asier, Giustino Feliciano
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.
Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.
Phys Rev Lett. 2022 Aug 12;129(7):076402. doi: 10.1103/PhysRevLett.129.076402.
Ab initio calculations of the phonon-induced band structure renormalization are currently based on the perturbative Allen-Heine theory and its many-body generalizations. These approaches are unsuitable to describe materials where electrons form localized polarons. Here, we develop a self-consistent, many-body Green's function theory of band structure renormalization that incorporates localization and self-trapping. We show that the present approach reduces to the Allen-Heine theory in the weak-coupling limit, and to total energy calculations of self-trapped polarons in the strong-coupling limit. To demonstrate this methodology, we reproduce the path-integral results of Feynman and diagrammatic Monte Carlo calculations for the Fröhlich model at all couplings, and we calculate the zero point renormalization of the band gap of an ionic insulator including polaronic effects.
目前,声子诱导的能带结构重整化的从头计算基于微扰艾伦 - 海涅理论及其多体推广。这些方法不适用于描述电子形成局域极化子的材料。在此,我们发展了一种自洽的多体格林函数能带结构重整化理论,该理论纳入了局域化和自陷效应。我们表明,当前方法在弱耦合极限下简化为艾伦 - 海涅理论,在强耦合极限下简化为自陷极化子的总能计算。为了证明这种方法,我们在所有耦合下重现了费曼路径积分结果以及弗罗利希模型的图解蒙特卡罗计算结果,并且我们计算了包含极化子效应的离子绝缘体带隙的零点重整化。