Suppr超能文献

Dyskerin 中的特异性突变会破坏 scaRNA13 的 3' 端加工。

Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13.

机构信息

Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Department of Pediatrics, Harvard Medical School; Manton Center for Orphan Disease Research; Harvard Initiative in RNA Medicine; Boston, MA, USA.

Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.

出版信息

Nucleic Acids Res. 2022 Sep 9;50(16):9413-9425. doi: 10.1093/nar/gkac706.

Abstract

Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.

摘要

DKC1 基因突变(编码 dyskerin)通过降低端粒酶的非编码 RNA 成分 TERC 的稳态水平,导致包括先天性角化不良症(DC)在内的端粒疾病。DKC1 突变如何不同程度地影响众多其他 snoRNA 仍不清楚,这是理解 DC 中除了端粒维持受损之外的疾病机制的障碍。在这里,我们使用 DC 患者的 iPSC 表明,dyskerin N 端延伸结构域(NTE)中的突变会使 scaRNA13 失调。在携带 del37L NTE 突变的 iPSC 或通过 CRISPR/Cas9 工程化携带 NTE 突变的 iPSC 中,但在携带 C 端突变的 iPSC 中,我们发现 scaRNA13 转录物具有异常的 3' 延伸,这与 DC 中 exoribonuclease PARN 突变时所见的情况一样。通过基因组编辑修复 del37L DKC1 突变,或通过遗传或药理学失活与 PARN 对抗的聚合酶 PAPD5,可挽救 scaRNA13 的生物发生。对人类端粒酶冷冻电镜结构的检查表明,除了介导分子间 dyskerin 相互作用外,NTE 还与相关 snoRNA 的末端残基相互作用,表明该结构域在 3' 端定义中起作用。我们的结果为 dyskerin 和 PARN/PAPD5 轴在 TERC 以外的 snoRNA 生物发生和积累中的相互作用提供了机制见解,拓宽了我们对人类疾病中 ncRNA 失调的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70b/9458449/3f12e2978d89/gkac706figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验