Suppr超能文献

利用机器学习方法再现测量特征,了解大气甲醛的模型与测量之间的差异。

Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde.

机构信息

Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.

Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sci Total Environ. 2022 Dec 10;851(Pt 2):158271. doi: 10.1016/j.scitotenv.2022.158271. Epub 2022 Aug 24.

Abstract

The solar absorption spectrometry in the infrared spectral region, using high-resolution Fourier transform infrared (FTIR) spectrometer, has been established as a powerful tool in atmospheric science. These observations cannot be performed continuously, for example, clouds prevent observations. On the other hand, chemical transport models give continuously data. Their results depend on the knowledge of emission inventories, the chemistry involved, and the meteorological fields, yielding to potential biases between measurements and simulations. In our study we concentrated on Formaldehyde (HCHO) and used machine learning approach to fill the gap between the observations, performed on an irregular time scale and having their measurement lacks, and model data, giving continuous data, but having potential variable biases. The proposed machine learning approach is based on the Light Gradient Boosting Machine (LightGBM) algorithm and created by using GEOS-Chem simulations, meteorological fields, emission inventory, and is referred to as the GEOS-Chem-LightGBM model. The results of established GEOS-Chem-LightGBM model have generated consistent HCHO predictions with the ground-based FTIR and satellite (OMI and TROPOMI) observations. In order to understand the GEOS-Chem model to measurement discrepancy, we have investigated the contribution of each input variable to GEOS-Chem-LightGBM model HCHO predictions through the SHapely Additive exPlanations (SHAP) approach. We found that the GEOS-Chem model underestimates the sensitivities of HCHO total column to most photochemical variables, contributing to lower amplitudes of diurnal cycle and seasonal cycle by the GEOS-Chem model. By correcting the model-to-measurement discrepancy, the sensitivities of HCHO total column to all variables by the GEOS-Chem-LightGBM became to be in good agreement with the FTIR observations. As a result, GEOS-Chem-LightGBM model has significantly improved the performance of HCHO predictions compared to the GEOS-Chem alone. The proposed GEOS-Chem-LightGBM model can be extendible to other atmospheric constituents obtained by various measurement techniques and platforms, and is expected to have wide applications.

摘要

建立了一种在红外光谱区使用高分辨率傅里叶变换红外(FTIR)光谱仪的太阳吸收光谱法,该方法已成为大气科学中的有力工具。这些观测不能连续进行,例如,云层会妨碍观测。另一方面,化学输送模型会连续提供数据。其结果取决于排放清单的知识、所涉及的化学物质以及气象场,从而导致测量值和模拟值之间存在潜在偏差。在我们的研究中,我们集中研究了甲醛(HCHO),并使用机器学习方法来填补观测结果之间的差距,这些观测结果是在不规则的时间尺度上进行的,并且存在测量不足的情况,而模型数据则提供了连续的数据,但存在潜在的可变偏差。所提出的机器学习方法基于 Light Gradient Boosting Machine(LightGBM)算法,并使用 GEOS-Chem 模拟、气象场、排放清单创建,称为 GEOS-Chem-LightGBM 模型。建立的 GEOS-Chem-LightGBM 模型的结果与地面 FTIR 和卫星(OMI 和 TROPOMI)观测结果产生了一致的 HCHO 预测。为了了解 GEOS-Chem 模型与测量结果之间的差异,我们通过 SHapely Additive exPlanations(SHAP)方法研究了每个输入变量对 GEOS-Chem-LightGBM 模型 HCHO 预测的贡献。我们发现,GEOS-Chem 模型低估了 HCHO 总柱对大多数光化学变量的敏感性,导致 GEOS-Chem 模型的日变化和季节变化幅度较低。通过纠正模型与测量结果之间的差异,GEOS-Chem-LightGBM 模型对 HCHO 总柱的所有变量的敏感性与 FTIR 观测结果一致。结果,与单独使用 GEOS-Chem 相比,GEOS-Chem-LightGBM 模型显著提高了 HCHO 预测的性能。所提出的 GEOS-Chem-LightGBM 模型可以扩展到其他通过各种测量技术和平台获得的大气成分,预计具有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验