Suppr超能文献

从太空观测大气中的甲醛(HCHO):对来自四颗卫星(OMI、GOME2A、GOME2B、OMPS)的六种反演结果与美国东南部SEACRS飞机观测数据进行验证和比对

Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEACRS aircraft observations over the Southeast US.

作者信息

Zhu Lei, Jacob Daniel J, Kim Patrick S, Fisher Jenny A, Yu Karen, Travis Katherine R, Mickley Loretta J, Yantosca Robert M, Sulprizio Melissa P, De Smedt Isabelle, Abad Gonzalo Gonzalez, Chance Kelly, Li Can, Ferrare Richard, Fried Alan, Hair Johnathan W, Hanisco Thomas F, Richter Dirk, Scarino Amy Jo, Walega James, Weibring Petter, Wolfe Glenn M

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.

出版信息

Atmos Chem Phys. 2016;16(21):13477-13490. doi: 10.5194/acp-16-13477-2016. Epub 2016 Nov 1.

Abstract

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEACRS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor () calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEACRS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

摘要

来自卫星的甲醛(HCHO)柱浓度数据被广泛用作挥发性有机化合物(VOCs)排放的替代指标,但对这些数据的验证极为有限。在此,我们利用2013年8月至9月期间美国国家航空航天局(NASA)在东南部开展的SEACRS活动中获得的高精度HCHO飞机观测数据,对来自四种不同卫星仪器(OMI、GOME2A、GOME2B和OMPS)以及三个不同研究团队的六种HCHO柱浓度反演结果进行验证和相互比较。GEOS-Chem化学传输模型被用作通用的相互比较平台。所有反演结果都显示在阿肯色州和路易斯安那州上空存在HCHO最大值,这与飞机观测结果一致,反映了生物源异戊二烯的高排放。这些反演结果在美国东南部的空间变异性(在0.5°×0.5°网格上为0.4 - 0.8)以及逐日变异性(为0.5 - 0.8)方面也相互一致。然而,所有反演结果的均值都偏低20% - 51%,这将导致从卫星数据估算异戊二烯排放时出现相应偏差。偏差最小的是OMI - BIRA,相对于其他反演结果,它具有较高的校正斜柱浓度,并且在其空气质量因子(AMF)计算中散射权重较低。OMI - BIRA在用于AMF计算的假设垂直HCHO形状剖面中存在系统误差,校正这一误差将消除其相对于SEACRS数据的偏差。我们的结果支持在校正低均值偏差后,将卫星HCHO数据用作异戊二烯排放的定量替代指标。偏差中没有明显模式,这表明在获得更好的理解之前,可以对数据应用统一的校正因子。

相似文献

3
Why do Models Overestimate Surface Ozone in the Southeastern United States?为何模型高估了美国东南部的地表臭氧?
Atmos Chem Phys. 2016;16(21):13561-13577. doi: 10.5194/acp-16-13561-2016. Epub 2016 Nov 1.
5
Satellite Formaldehyde to Support Model Evaluation.用于支持模型评估的卫星甲醛。
J Geophys Res Atmos. 2021 Feb 27;126(4). doi: 10.1029/2020jd032881.
8
Validation of OMI HCHO data and its analysis over Asia.验证 OMI HCHO 数据及其在亚洲的分析。
Sci Total Environ. 2014 Aug 15;490:93-105. doi: 10.1016/j.scitotenv.2014.04.108. Epub 2014 May 21.
10
SO Emission Estimates Using OMI SO Retrievals for 2005-2017.利用2005 - 2017年OMI二氧化硫反演数据估算二氧化硫排放量
J Geophys Res Atmos. 2019 Jul 27;124(14):8336-8359. doi: 10.1029/2019JD030243. Epub 2019 Jul 31.

引用本文的文献

8
Satellite Formaldehyde to Support Model Evaluation.用于支持模型评估的卫星甲醛。
J Geophys Res Atmos. 2021 Feb 27;126(4). doi: 10.1029/2020jd032881.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验