Suppr超能文献

任意协方差依赖性下的多重两样本检验及其在成像质谱中的应用。

Multiple two-sample testing under arbitrary covariance dependency with an application in imaging mass spectrometry.

机构信息

Institute for Statistics, University of Bremen, Bremen, Germany.

出版信息

Biom J. 2023 Feb;65(2):e2100328. doi: 10.1002/bimj.202100328. Epub 2022 Aug 27.

Abstract

Large-scale hypothesis testing has become a ubiquitous problem in high-dimensional statistical inference, with broad applications in various scientific disciplines. One relevant application is constituted by imaging mass spectrometry (IMS) association studies, where a large number of tests are performed simultaneously in order to identify molecular masses that are associated with a particular phenotype, for example, a cancer subtype. Mass spectra obtained from matrix-assisted laser desorption/ionization (MALDI) experiments are dependent, when considered as statistical quantities. False discovery proportion (FDP) estimation and  control under arbitrary dependency structure among test statistics is an active topic in modern multiple testing research. In this context, we are concerned with the evaluation of associations between the binary outcome variable (describing the phenotype) and multiple predictors derived from MALDI measurements. We propose an inference procedure in which the correlation matrix of the test statistics is utilized. The approach is based on multiple marginal models. Specifically, we fit a marginal logistic regression model for each predictor individually. Asymptotic joint normality of the stacked vector of the marginal regression coefficients is established under standard regularity assumptions, and their (limiting) correlation matrix is estimated. The proposed method extracts common factors from the resulting empirical correlation matrix. Finally, we estimate the realized FDP of a thresholding procedure for the marginal p-values. We demonstrate a practical application of the proposed workflow to MALDI IMS data in an oncological context.

摘要

大规模假设检验在高维统计推断中已成为一个普遍存在的问题,在各个科学领域都有广泛的应用。其中一个相关的应用是成像质谱(IMS)关联研究,其中同时进行大量的测试,以识别与特定表型(例如癌症亚型)相关的分子质量。当将基质辅助激光解吸/电离(MALDI)实验获得的质谱视为统计量时,它们是相关的。在任意测试统计量之间的依赖结构下进行虚假发现率(FDP)估计和控制是现代多重测试研究中的一个活跃课题。在这种情况下,我们关注的是二元结果变量(描述表型)与源自 MALDI 测量的多个预测因子之间的关联评估。我们提出了一种利用测试统计量相关矩阵的推理程序。该方法基于多个边际模型。具体来说,我们为每个预测因子分别拟合边际逻辑回归模型。在标准正则性假设下,建立了堆叠的边际回归系数向量的渐近联合正态性,并估计了它们的(极限)相关矩阵。所提出的方法从所得经验相关矩阵中提取共同因素。最后,我们估计了边际 p 值的阈值处理的实现 FDP。我们将所提出的工作流程应用于肿瘤学背景下的 MALDI IMS 数据,展示了一个实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验