Suppr超能文献

界面工程构建 P 负载的空心纳米杂化材料用于阻燃和高性能环氧树脂。

Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins.

机构信息

Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China.

Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt B):851-863. doi: 10.1016/j.jcis.2022.08.117. Epub 2022 Aug 19.

Abstract

Nano flame retardants, as one of the key flame retardants in recent years, have been limited by poor efficiency and weak compatibility. In this study, we propose an interfacial hollow engineering strategy to tackle this problem by assembling P-phytic acid into the hollow cavity of mesoporous SiO grafted with a polydopamine transition metal. In this design, the grafted polydopamine-metal coatings on the hybrids can greatly improve their interface compatibility with the polymer matrix, while the loaded phytic acid in the cavity contributes to enhance flame retardancy. Consequently, the resultant hierarchical P-loaded nanohybrids show both high flame retardancy and mechanical reinforcement for the polymer. Taking epoxy resin (EP, a typical thermosetting resin used in large quantities) as a representative, at only 1 wt% loading of the nanohybrids, the impact strength of the nanocomposites improved by 35.7% compared to pure EP. Remarkably, the hybrids can simultaneously endow EP with high flame retardancy (low heat release rate) and satisfactory smoke inhibition. Additionally, the flame-retardant mechanism analysis confirmed that the nanohybrid had a better catalytic carbonization effect on promoting the highly graphitized carbon layer, thereby suppressing the fire hazard of epoxy resins. This research offers a new interfacial hollow engineering method for the construct and design of high-performance EP with nanohybrids.

摘要

纳米阻燃剂作为近年来的关键阻燃剂之一,其效率差和相容性弱的问题受到限制。在本研究中,我们提出了一种界面空心工程策略,通过将植酸组装到接枝有多巴胺过渡金属的介孔 SiO2 的空心腔中,来解决这个问题。在这个设计中,接枝在杂化物上的聚多巴胺-金属涂层可以极大地提高其与聚合物基体的界面相容性,而负载在空腔中的植酸有助于提高阻燃性。因此,所得的分层负载植酸的纳米杂化物既表现出高阻燃性,又能增强聚合物的机械性能。以环氧树脂(EP,一种大量使用的典型热固性树脂)为例,仅添加 1wt%的纳米杂化物,纳米复合材料的冲击强度比纯 EP 提高了 35.7%。值得注意的是,该杂化物可以同时赋予 EP 高阻燃性(低热释放率)和令人满意的抑烟性。此外,阻燃机理分析证实,纳米杂化物在促进高度石墨化碳层方面具有更好的催化碳化作用,从而抑制环氧树脂的火灾危险。这项研究为使用纳米杂化物构建和设计高性能 EP 提供了一种新的界面空心工程方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验