Institut du cancer de Montpellier, Fédération universitaire d'oncologie-radiothérapie d'Occitanie Méditerranée (Forom), Inserm U1194 IRCM, 208, avenue des Apothicaires, 34298 Montpellier, France.
Institut du cancer de Montpellier, Fédération universitaire d'oncologie-radiothérapie d'Occitanie Méditerranée (Forom), Inserm U1194 IRCM, 208, avenue des Apothicaires, 34298 Montpellier, France.
Cancer Radiother. 2022 Oct;26(6-7):784-788. doi: 10.1016/j.canrad.2022.06.028. Epub 2022 Aug 26.
The purpose of this article is to give a summary of the progress of magnetic resonance imaging (MRI) in radiotherapy. MRI is an important imaging modality for treatment planning in radiotherapy. However, the registration step with the simulation scanner can be a source of errors, motivating the implementation of all-MRI simulation methods and new accelerators coupled with on-board MRI. First, practical MRI imaging for radiotherapy is detailed, but also the importance of a coherent imaging workflow incorporating all imaging modalities. Second, future evolutions and research domains such as quantitative imaging biomarkers, MRI-only pseudo computed tomography and radiomics are discussed. Finally, the application of MRI during radiotherapy treatment is reviewed: the use of MR-linear accelerators. MRI is increasingly integrated into radiotherapy. Advances in diagnostic imaging can thus benefit radiotherapy, but specific radiotherapy constraints lead to additional challenges and require close collaboration between radiologists, radiation oncologists, technologists and physicists. The integration of quantitative imaging biomarkers in the radiotherapy process will result in mutual benefit for diagnostic imaging and radiotherapy. MRI-guided radiotherapy has already been used for several years in clinical routine. Abdominopelvic neoplasias (pancreas, liver, prostate) are the preferred locations for treatment because of their favourable contrast in MRI, their movement during irradiation and their proximity to organs at risk of radiation exposure, making the tracking and daily adaptation of the plan essential. MRI has emerged as an increasingly necessary imaging modality for radiotherapy planning. Inclusion of patients in clinical trials evaluating new MRI-guided radiotherapy techniques and associated quantitative imaging biomarkers will be necessary to assess the benefits.
本文旨在概述磁共振成像(MRI)在放射治疗中的进展。MRI 是放射治疗计划中重要的成像方式。然而,与模拟扫描仪的配准步骤可能会成为误差源,这促使人们采用全 MRI 模拟方法和新的加速器,并结合内置 MRI。首先,详细介绍了用于放射治疗的实用 MRI 成像技术,还介绍了将所有成像方式纳入一致成像工作流程的重要性。其次,讨论了定量成像生物标志物、仅 MRI 伪 CT 和放射组学等未来的发展和研究领域。最后,回顾了 MRI 在放射治疗过程中的应用:MR-线性加速器的使用。MRI 越来越多地被整合到放射治疗中。因此,诊断成像的进步可以使放射治疗受益,但特定的放射治疗限制会带来额外的挑战,需要放射科医生、放射肿瘤学家、技术人员和物理学家之间密切合作。将定量成像生物标志物纳入放射治疗过程中,将为诊断成像和放射治疗带来互惠互利。MRI 引导的放射治疗已经在临床常规中使用了多年。腹盆部肿瘤(胰腺、肝脏、前列腺)是首选的治疗部位,因为它们在 MRI 中对比度良好,在照射过程中会移动,并且靠近辐射暴露的危险器官,这使得对计划进行跟踪和日常调整至关重要。MRI 已成为放射治疗计划中越来越必要的成像方式。有必要将患者纳入评估新的 MRI 引导的放射治疗技术和相关定量成像生物标志物的临床试验中,以评估其益处。