Suppr超能文献

恶性胸膜间皮瘤中剪接事件和剪接因子的预后风险评估模型。

Prognostic risk assessment model for alternative splicing events and splicing factors in malignant pleural mesothelioma.

机构信息

Department of Clinical Medicine, Southwest Medical University, Luzhou, China.

Department of Gastroenterology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China.

出版信息

Cancer Med. 2023 Feb;12(4):4895-4906. doi: 10.1002/cam4.5174. Epub 2022 Aug 28.

Abstract

BACKGROUND

Malignant pleural mesothelioma (MPM) is a rare and highly malignant thoracic tumor. Although alternative splicing (AS) is associated with tumor prognosis, the prognostic significance of AS in MPM is unknown.

METHODS

Transcriptomic data, clinical information, and splicing percentage values for MPM were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analyses were performed to establish a model affecting the prognosis of MPM. Survival and ROC analyses were used to test the effects of the prognostic model. LASSO/multivariate Cox analysis was used to construct the MPM prognostic splicing factor (SF) model. The SF-AS interaction network was analyzed using Spearman correlation and visualized using Cytoscape. The association between the MPM prognostic SF model and drug sensitivity to chemotherapeutic agents such as cisplatin was analyzed using pRRophetic.R.

RESULTS

The LASSO/multivariate Cox analysis identified 41 AS events and 2 SFs that were mostly associated with survival. Nine prognostic prediction models (i.e., seven types of AS model, total AS model, and SF model) were developed. An MPM prognostic SF-AS regulatory network was subsequently constructed with decreased drug sensitivity in the SF model high-risk group (p = 0.025).

CONCLUSION

This study provides the first comprehensive analysis of the prognostic value of AS events and SFs in MPM. The SF-AS regulatory network established in this study and our drug sensitivity analysis using the SF model may provide novel targets for pharmacological studies of MPM.

摘要

背景

恶性胸膜间皮瘤(MPM)是一种罕见且高度恶性的胸部肿瘤。虽然可变剪接(AS)与肿瘤预后相关,但 AS 在 MPM 中的预后意义尚不清楚。

方法

从癌症基因组图谱(TCGA)和 TCGA SpliceSeq 数据库中获取 MPM 的转录组数据、临床信息和剪接百分比值。使用最小绝对收缩和选择算子(LASSO)回归和多变量 Cox 分析建立影响 MPM 预后的模型。使用生存和 ROC 分析来测试预后模型的效果。使用 LASSO/多变量 Cox 分析构建 MPM 预后剪接因子(SF)模型。使用 Spearman 相关分析和 Cytoscape 可视化分析 SF-AS 相互作用网络。使用 pRRophetic.R 分析 MPM 预后 SF 模型与顺铂等化疗药物敏感性之间的关联。

结果

LASSO/多变量 Cox 分析确定了 41 个 AS 事件和 2 个与生存最相关的 SF。建立了 9 个预后预测模型(即 7 种 AS 模型、总 AS 模型和 SF 模型)。随后构建了 MPM 预后 SF-AS 调控网络,SF 模型高风险组的药物敏感性降低(p=0.025)。

结论

本研究首次全面分析了 AS 事件和 SF 在 MPM 中的预后价值。本研究建立的 SF-AS 调控网络以及我们使用 SF 模型进行的药物敏感性分析,可能为 MPM 的药理学研究提供新的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ca/9972025/a20dbce52f77/CAM4-12-4895-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验