Hu Peng, Hu Jialang, Liu Hao, Wang Hao, Zhou Jie, Krishna Rajamani, Ji Hongbing
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, 1098 XH Amsterdam, The Netherlands.
ACS Cent Sci. 2022 Aug 24;8(8):1159-1168. doi: 10.1021/acscentsci.2c00554. Epub 2022 Jul 22.
Propylene production via nonoxidative propane dehydrogenation (PDH) holds great promise in meeting growing global demand for propylene. Effective adsorptive purification of a low concentration of propylene from quinary PDH byproducts comprising methane (CH), ethylene (CH), ethane (CH), propylene (CH), and propane (CH) has been an unsolved academic bottleneck. Herein, we now report an ultramicroporous zinc metal-organic framework (Zn-MOF, termed as ) underlying a rigid one-dimensional channel, enabling trace CH capture and effective separation from quinary PDH byproducts. Adsorption isotherms of suggest a record-high CH uptake of 34.0/92.4 cm cm (0.01/0.1 bar) at 298 K. In situ spectroscopies, crystallographic experiments, and modeling have jointly elucidated that the outstanding propylene uptakes at lower pressure are dominated by multiple binding interactions and swift diffusion behavior, yielding quasi-orthogonal configuration of propylene in adaptive channels. Breakthrough tests demonstrate that 30.8 L of propylene with a serviceable purity of 95.0-99.4% can be accomplished from equimolar CH/CH mixtures for 1 kg of activated . Such an excellent property is also validated by the breakthrough tests of quinary mixtures containing CH/CH/CH/CH/CH (3/5/6/42/44, v/v/v/v/v). Particularly, structurally stable can be easily synthesized on the kilogram scale using cheap materials (only $167 for per kilogram of ), which is important in industrial applications.
通过非氧化丙烷脱氢(PDH)生产丙烯在满足全球对丙烯不断增长的需求方面具有巨大潜力。从包含甲烷(CH)、乙烯(CH)、乙烷(CH)、丙烯(CH)和丙烷(CH)的五元PDH副产物中有效吸附纯化低浓度丙烯一直是一个未解决的学术瓶颈。在此,我们报告了一种具有刚性一维通道的超微孔锌金属有机框架(Zn-MOF,称为),能够捕获痕量CH并从五元PDH副产物中有效分离。的吸附等温线表明,在298 K下,CH的吸附量达到创纪录的34.0/92.4 cm³/cm³(0.01/0.1 bar)。原位光谱学、晶体学实验和建模共同阐明,在较低压力下出色的丙烯吸附量由多种结合相互作用和快速扩散行为主导,在自适应通道中产生丙烯的准正交构型。突破测试表明,对于1 kg活化的,从等摩尔CH/CH混合物中可以获得30.8 L纯度为95.0 - 99.4%的可用丙烯。这种优异的性能也通过含有CH/CH/CH/CH/CH(3/5/6/42/44,v/v/v/v/v)的五元混合物的突破测试得到验证。特别地,可以使用廉价材料(每千克仅167美元)在千克规模上轻松合成结构稳定的,这在工业应用中很重要。