Suppr超能文献

基于潜在狄利克雷分配(LDA)的区块链技术信息建模:集成中使用的趋势和研究模式综述

Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration.

作者信息

Sharma Chetan, Sharma Shamneesh

机构信息

Chitkara University, Solan, Himachal Pradesh India.

School of Computer Science & Engineering, Poornima University, Jaipur, Rajasthan India.

出版信息

Multimed Tools Appl. 2022;81(25):36805-36831. doi: 10.1007/s11042-022-13500-z. Epub 2022 Aug 20.

Abstract

The past decade is known as the era of integrations where multiple technologies had integrated, and new research trends were seen. The security of data and information in the digital world has been a challenge to everyone; Blockchain technology has attracted many researchers in these scenarios. This paper focuses on finding the current trends in Blockchain technology to help the researchers select an area to carry future research. The data related to Blockchain Technologies have been collected from IEEE, Springer, ACM, and other digital databases. Then, the formulated corpus is used for topic modelling, and Latent Dirichlet Allocation is deployed. The outcomes of the Latent Dirichlet Allocation model are then analyzed based on various extracted key terms and key documents found for each topic. All the topic solution has been identified from the bag of words. The extracted topics are thereafter semantically mapped. Thus, based on the analysis of more than 900 papers, the most recent research trends have been discussed in this paper, ultimately focusing on the areas that need more attention from the research community. Also, the meta data analysis has been accomplished, evaluating the year wise and publication source wise research growth. More than 15 research directions are elaborated in this paper, which can direct and guide the researchers to pursuit the research in specific trends and also, find the research gaps in various technologies associated with Blockchain Technology.

摘要

过去十年被称为整合时代,多种技术相互融合,呈现出诸多新的研究趋势。数字世界中数据和信息的安全对每个人来说都是一项挑战;在这种情况下,区块链技术吸引了众多研究人员。本文着重探讨区块链技术的当前趋势,以帮助研究人员选择未来开展研究的领域。与区块链技术相关的数据已从电气和电子工程师协会(IEEE)、施普林格、美国计算机协会(ACM)以及其他数字数据库中收集。然后,将所构建的语料库用于主题建模,并采用潜在狄利克雷分配(Latent Dirichlet Allocation)方法。接着,根据为每个主题提取的各种关键术语和关键文献,对潜在狄利克雷分配模型的结果进行分析。所有主题解决方案均从词袋中确定。此后,对提取的主题进行语义映射。因此,基于对900多篇论文的分析,本文讨论了最新的研究趋势,最终聚焦于研究界需要更多关注的领域。此外,还完成了元数据分析,评估了逐年以及按出版来源划分的研究增长情况。本文详细阐述了15多个研究方向,可为研究人员在特定趋势下开展研究提供指导,并找出与区块链技术相关的各种技术中的研究空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c7/9391652/049ec5bb55ad/11042_2022_13500_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验