Naqvi Saba, Khanadeev Vitaly A, Khlebtsov Boris N, Khlebtsov Nikolai G, Deore Monika S, Packirisamy Gopinath
Department of Regulatory Toxicology/Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India.
Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Joint Faculty in Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
Front Cell Dev Biol. 2022 Aug 12;10:846175. doi: 10.3389/fcell.2022.846175. eCollection 2022.
Human serum albumin (HSA) nanoparticles are promising biocompatible, nontoxic, and non-immunogenic platforms for biomedical applications such as bioimaging and drug and gene delivery. The development of nonviral gene delivery vectors is a great challenge for efficient and safe gene therapy. Sulforaphane (SF) can stimulate the expression of antioxidant genes activation of a nuclear transcription factor, the erythroid-2 related factor 2 (Nrf-2). Here, we use polyethyleneimine (PEI)-stabilized HSA nanoparticles to stimulate endogenous antioxidant defense mechanisms in lung epithelial cells L-132 through the combinatorial effect of SF drug and antioxidant superoxide dismutase 1 gene (pSOD1 plasmid) delivered by HSA-PEI-SF-pSOD1 nanocomposites (NCs). The developed NCs demonstrated high biocompatibility (L-132 viability, >95%, MTT assay) and high antioxidant activity because of efficient entry of the SOD1 gene and SF-loaded NCs at a very low (3 μg) dose in L-132 cells. A high transfection efficiency of L-132 cells (∼66%, fluorescent microscopy) was obtained with the GFP-tagged transgene SOD1-GFP. We speculate that the antioxidant activity of HSA-PEI-SF-pSOD1 NCs in L-132 cells is due to the initial release of SF followed by subsequent SOD1 gene expression after three to four days of incubation. Hence, the developed HSA-based NCs can be efficient biocompatible nanocarriers for safe and effective drug and gene delivery applications to treat diseases with high oxidative stress due to combinatorial SF and SOD1 gene mechanisms.
人血清白蛋白(HSA)纳米颗粒是很有前景的生物相容性、无毒且非免疫原性的平台,可用于生物医学应用,如生物成像以及药物和基因递送。非病毒基因递送载体的开发对于高效且安全的基因治疗而言是一项巨大挑战。萝卜硫素(SF)可通过激活核转录因子即红细胞生成素2相关因子2(Nrf-2)来刺激抗氧化基因的表达。在此,我们利用聚乙烯亚胺(PEI)稳定的HSA纳米颗粒,通过HSA-PEI-SF-pSOD1纳米复合材料(NCs)递送的SF药物和抗氧化超氧化物歧化酶1基因(pSOD1质粒)的组合效应,来刺激肺上皮细胞L-132中的内源性抗氧化防御机制。所开发的NCs表现出高生物相容性(L-132细胞活力,>95%,MTT法)以及高抗氧化活性,这是因为SOD1基因和负载SF的NCs能以非常低的(3μg)剂量高效进入L-132细胞。用绿色荧光蛋白标记的转基因SOD1-GFP获得了L-132细胞的高转染效率(~66%,荧光显微镜观察)。我们推测,HSA-PEI-SF-pSOD1 NCs在L-132细胞中的抗氧化活性是由于SF的初始释放,随后在孵育三到四天后SOD1基因表达。因此,所开发的基于HSA的NCs可以成为高效的生物相容性纳米载体,用于安全有效的药物和基因递送应用,以治疗由于SF和SOD1基因组合机制导致的高氧化应激疾病。