Suppr超能文献

基于临床的发热婴儿侵袭性细菌感染检测模型的建立。

Derivation of a clinical-based model to detect invasive bacterial infections in febrile infants.

机构信息

Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.

Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York, USA.

出版信息

J Hosp Med. 2022 Nov;17(11):893-900. doi: 10.1002/jhm.12956. Epub 2022 Aug 29.

Abstract

BACKGROUND

Febrile infants are at risk for invasive bacterial infections (IBIs) (i.e., bacteremia and bacterial meningitis), which, when undiagnosed, may have devastating consequences. Current IBI predictive models rely on serum biomarkers, which may not provide timely results and may be difficult to obtain in low-resource settings.

OBJECTIVE

The aim of this study was to derive a clinical-based IBI predictive model for febrile infants.

DESIGNS, SETTING, AND PARTICIPANTS: This is a cross-sectional study of infants brought to two pediatric emergency departments from January 2011 to December 2018. Inclusion criteria were age 0-90 days, temperature ≥38°C, and documented gestational age, fever duration, and illness duration.

MAIN OUTCOME AND MEASURES

To detect IBIs, we used regression and ensemble machine learning models and evidence-based predictors (i.e., sex, age, chronic medical condition, gestational age, appearance, maximum temperature, fever duration, illness duration, cough status, and urinary tract inflammation). We up-weighted infants with IBIs 8-fold and used 10-fold cross-validation to avoid overfitting. We calculated the area under the receiver operating characteristic curve (AUC), prioritizing a high sensitivity to identify the optimal cut-point to estimate sensitivity and specificity.

RESULTS

Of 2311 febrile infants, 39 had an IBI (1.7%); the median age was 54 days (interquartile range: 35-71). The AUC was 0.819 (95% confidence interval: 0.762, 0.868). The predictive model achieved a sensitivity of 0.974 (0.800, 1.00) and a specificity of 0.530 (0.484, 0.575). Findings suggest that a clinical-based model can detect IBIs in febrile infants, performing similarly to serum biomarker-based models. This model may improve health equity by enabling clinicians to estimate IBI risk in any setting. Future studies should prospectively validate findings across multiple sites and investigate performance by age.

摘要

背景

发热婴儿有发生侵袭性细菌感染(IBI)(即菌血症和细菌性脑膜炎)的风险,如果未被诊断,可能会产生灾难性的后果。目前的 IBI 预测模型依赖于血清生物标志物,这些标志物可能无法提供及时的结果,并且在资源匮乏的环境中可能难以获得。

目的

本研究旨在为发热婴儿建立一种基于临床的 IBI 预测模型。

设计、地点和参与者:这是一项 2011 年 1 月至 2018 年 12 月期间在两家儿科急诊部门就诊的婴儿的横断面研究。纳入标准为年龄 0-90 天,体温≥38°C,并有记录的胎龄、发热持续时间和疾病持续时间。

主要结果和测量指标

为了检测 IBI,我们使用了回归和集成机器学习模型以及基于证据的预测因子(即性别、年龄、慢性疾病、胎龄、外观、最高体温、发热持续时间、疾病持续时间、咳嗽状态和尿路感染)。我们将 IBI 婴儿的权重提高 8 倍,并使用 10 倍交叉验证来避免过度拟合。我们计算了接收器操作特征曲线下的面积(AUC),优先考虑高灵敏度以确定最佳切点来估计敏感性和特异性。

结果

在 2311 名发热婴儿中,有 39 名患有 IBI(1.7%);中位数年龄为 54 天(四分位距:35-71)。AUC 为 0.819(95%置信区间:0.762,0.868)。预测模型的灵敏度为 0.974(0.800,1.00),特异性为 0.530(0.484,0.575)。研究结果表明,基于临床的模型可以检测发热婴儿的 IBI,其性能与基于血清生物标志物的模型相似。该模型可以通过使临床医生能够在任何环境下估计 IBI 风险,从而提高卫生公平性。未来的研究应在多个地点前瞻性验证这些发现,并研究按年龄划分的性能。

相似文献

1
Derivation of a clinical-based model to detect invasive bacterial infections in febrile infants.
J Hosp Med. 2022 Nov;17(11):893-900. doi: 10.1002/jhm.12956. Epub 2022 Aug 29.
2
Refinement and Validation of a Clinical-Based Approach to Evaluate Young Febrile Infants.
Hosp Pediatr. 2022 Apr 1;12(4):399-407. doi: 10.1542/hpeds.2021-006214.
3
4
Febrile Infants ≤60 Days Old With Positive Urinalysis Results and Invasive Bacterial Infections.
Hosp Pediatr. 2020 Dec;10(12):1120-1125. doi: 10.1542/hpeds.2020-000638.
6
A Prediction Model to Identify Febrile Infants ≤60 Days at Low Risk of Invasive Bacterial Infection.
Pediatrics. 2019 Jul;144(1). doi: 10.1542/peds.2018-3604. Epub 2019 Jun 5.
7
8
Temperature threshold in the screening of bacterial infections in young infants with hypothermia.
Emerg Med J. 2023 Mar;40(3):189-194. doi: 10.1136/emermed-2022-212575. Epub 2022 Nov 17.
9
Use of Procalcitonin Assays to Predict Serious Bacterial Infection in Young Febrile Infants.
JAMA Pediatr. 2016 Jan;170(1):62-9. doi: 10.1001/jamapediatrics.2015.3210.
10
Febrile young infants with abnormal urine dipstick at low risk of invasive bacterial infection.
Arch Dis Child. 2021 Jul 19;106(8):758-763. doi: 10.1136/archdischild-2020-320468.

引用本文的文献

本文引用的文献

1
Derivation of a natural language processing algorithm to identify febrile infants.
J Hosp Med. 2022 Jan;17(1):11-18. doi: 10.1002/jhm.2732. Epub 2022 Jan 4.
2
Refinement and Validation of a Clinical-Based Approach to Evaluate Young Febrile Infants.
Hosp Pediatr. 2022 Apr 1;12(4):399-407. doi: 10.1542/hpeds.2021-006214.
3
Evaluation and Management of Well-Appearing Febrile Infants 8 to 60 Days Old.
Pediatrics. 2021 Aug;148(2). doi: 10.1542/peds.2021-052228. Epub 2021 Jul 19.
4
Using Clinical History Factors to Identify Bacterial Infections in Young Febrile Infants.
J Pediatr. 2021 May;232:192-199.e2. doi: 10.1016/j.jpeds.2020.12.079. Epub 2021 Jan 7.
5
Association of Cough Status With Bacterial Infections in Febrile Infants.
Hosp Pediatr. 2020 Feb;10(2):185-189. doi: 10.1542/hpeds.2019-0227. Epub 2020 Jan 8.
6
Prevalence of Bacterial Infection in Febrile Infant 61-90 Days Old Compared With Younger Infants.
Pediatr Infect Dis J. 2019 Dec;38(12):1163-1167. doi: 10.1097/INF.0000000000002461.
7
A Prediction Model to Identify Febrile Infants ≤60 Days at Low Risk of Invasive Bacterial Infection.
Pediatrics. 2019 Jul;144(1). doi: 10.1542/peds.2018-3604. Epub 2019 Jun 5.
8
9
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation.
Mach Learn. 2018;107(12):1895-1922. doi: 10.1007/s10994-018-5714-4. Epub 2018 May 9.
10
Advances in the Diagnosis and Management of Febrile Infants: Challenging Tradition.
Adv Pediatr. 2018 Aug;65(1):173-208. doi: 10.1016/j.yapd.2018.04.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验