Suppr超能文献

基于机器学习的发热小婴儿严重细菌感染预测模型的开发。

Development of a machine learning-based prediction model for serious bacterial infections in febrile young infants.

作者信息

Park Jun Sung, Yoo Reenar, Lim Soo-Young, Kim Dahyun, Chun Min Kyo, Han Jeeho, Lee Jeong-Yong, Choi Seung Jun, Oh Seak Hee, Lee Jong Seung, Lee Jina

机构信息

Pediatric Emergency Department, Asan Medical Center Children's Hospital, Songpa-gu, 서울특별시, Korea (the Republic of).

Department of Convergence Medicine, Asan Medical Center, Seoul, Korea (the Republic of).

出版信息

BMJ Paediatr Open. 2025 Jul 30;9(1):e003548. doi: 10.1136/bmjpo-2025-003548.

Abstract

BACKGROUND

To develop and validate machine learning (ML)-based models to predict serious bacterial infections (SBIs) in febrile infants aged ≤90 days.

METHODS

This retrospective study analysed data from febrile infants (≥38.0℃) aged ≤90 days. The development dataset comprised data from patients who visited the Seoul Asan Medical Center between 2015 and 2021, whereas the validation dataset included data from those who visited the centre from January 2022 to August 2023. Logistic regression (LR) and eXtreme Gradient Boosting (XGB) were used to develop the models for predicting SBIs, which were then compared with traditional rule-based models.

RESULTS

The study included data from 2860 patients: 2288 (80%) in the development dataset and 572 (20%) in the validation dataset. SBIs were confirmed in 482 patients (21.0%) in the development dataset and 131 (22.9%) in the validation dataset. The XGB and LR models showed excellent performance with areas under the curve of 0.990 and 0.981 in development, and 0.989 and 0.985 in validation datasets. In validation, both models demonstrated superior specificity (82.3-87.0% vs 46.2-72.2%) and positive predictive value (61.5-68.5% vs 34.4-49.8%) compared with traditional rule-based models, while maintaining perfect sensitivity and negative predictive value (both 100% vs 81.7-100% and 92.0-100%, respectively) without any false negatives. Urinalysis, C-reactive protein and procalcitonin were identified as top-tier features in the XGB model.

CONCLUSIONS

The ML-based prediction model demonstrated robust performance, with superior specificity and perfect sensitivity, which may enhance the accuracy of SBI detection and reduce the costs associated with false positives.

摘要

背景

开发并验证基于机器学习(ML)的模型,以预测90日龄及以下发热婴儿的严重细菌感染(SBI)。

方法

这项回顾性研究分析了90日龄及以下发热婴儿(体温≥38.0℃)的数据。开发数据集包括2015年至2021年间在首尔峨山医院就诊的患者数据,而验证数据集包括2022年1月至2023年8月期间在该中心就诊的患者数据。使用逻辑回归(LR)和极端梯度提升(XGB)来开发预测SBI的模型,然后将其与传统的基于规则的模型进行比较。

结果

该研究纳入了2860例患者的数据:开发数据集中有2288例(80%),验证数据集中有572例(20%)。开发数据集中有482例患者(21.0%)确诊为SBI,验证数据集中有131例(22.9%)。XGB和LR模型表现出色,开发数据集中曲线下面积分别为0.990和0.981,验证数据集中分别为0.989和0.985。在验证中,与传统的基于规则的模型相比,这两种模型均表现出更高的特异性(82.3 - 87.0%对46.2 - 72.2%)和阳性预测值(61.5 - 68.5%对34.4 - 49.8%),同时保持了完美的敏感性和阴性预测值(均为100%,而传统模型分别为81.7 - 100%和92.0 - 100%),且无任何假阴性。尿液分析、C反应蛋白和降钙素原被确定为XGB模型中的顶级特征。

结论

基于机器学习的预测模型表现出强大的性能,具有更高的特异性和完美的敏感性,这可能提高SBI检测的准确性,并降低与假阳性相关的成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ade8/12314954/606253cc292e/bmjpo-9-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验