Suppr超能文献

蛋白质折叠缺陷的全局抑制剂的机制见解。

Mechanistic insights into global suppressors of protein folding defects.

机构信息

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.

Centre for Chemical Biology and Therapeutics, Institute For Stem Cell Science and Regenerative Medicine, Bangalore, India.

出版信息

PLoS Genet. 2022 Aug 29;18(8):e1010334. doi: 10.1371/journal.pgen.1010334. eCollection 2022 Aug.

Abstract

Most amino acid substitutions in a protein either lead to partial loss-of-function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss-of-function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined six global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. When coupled to inactive mutants, they promote increased in-vivo solubilities as well as regain-of-function phenotypes. In the case of CcdB, where novel suppressors were isolated, we determined the crystal structures of three such suppressors to obtain insight into the specific molecular interactions responsible for the observed effects. While most individual suppressors result in small stability enhancements relative to wildtype, which can be combined to yield significant stability increments, thermodynamic stabilisation is neither necessary nor sufficient for suppressor action. Instead, in diverse systems, we observe that individual global suppressors greatly enhance the foldability of buried site mutants, primarily through increase in refolding rate parameters measured in vitro. In the crowded intracellular environment, mutations that slow down folding likely facilitate off-pathway aggregation. We suggest that suppressor mutations that accelerate refolding can counteract this, enhancing the yield of properly folded, functional protein in vivo.

摘要

大多数蛋白质中的氨基酸替换要么导致部分功能丧失,要么接近中性。有几项研究表明存在第二位置突变,可以挽救由多种功能丧失突变引起的缺陷。这种全局抑制突变是蛋白质进化的关键驱动力。然而,负责这种抑制的机制仍知之甚少。为了解决这个问题,我们对多个抑制突变进行了单独和与失活突变体组合的特征分析。我们研究了六种细菌毒素 CcdB 的全局抑制剂,TEM-1β-内酰胺酶的已知 M182T 全局抑制剂,p53-DBD 的 N239Y 全局抑制剂,以及三种 SARS-CoV-2 刺突受体结合域的抑制剂。当与失活突变体结合时,它们可以提高体内溶解度并恢复功能表型。在分离出新型抑制剂的 CcdB 中,我们确定了三种这样的抑制剂的晶体结构,以深入了解负责观察到的效果的特定分子相互作用。虽然大多数单个抑制剂相对于野生型产生较小的稳定性增强,这些增强可以组合以产生显著的稳定性增加,但热力学稳定性对于抑制作用既不是必需的也不是充分的。相反,在不同的系统中,我们观察到单个全局抑制剂极大地增强了埋藏位点突变体的折叠能力,主要是通过增加体外测量的重折叠率参数。在拥挤的细胞内环境中,减慢折叠的突变可能会促进偏离途径的聚集。我们认为,加速重折叠的抑制突变可以抵消这种情况,从而提高体内正确折叠、功能蛋白的产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cef/9491731/01db11138793/pgen.1010334.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验