Suppr超能文献

有限状态马尔可夫信道上传感器调度策略的双阈值结构

Double Threshold Structure of Sensor Scheduling Policy Over a Finite-State Markov Channel.

作者信息

Wei Jiang, Ye Dan

出版信息

IEEE Trans Cybern. 2023 Nov;53(11):7323-7332. doi: 10.1109/TCYB.2022.3197153. Epub 2023 Oct 17.

Abstract

In this article, we consider the optimal sensor scheduling for remote state estimation in cyber-physical systems (CPSs). Different from the existing works concerning the time-invariant channel state in the wireless communication network, our work considers the time-varying channel state modeled by a finite-state Markov channel (FSMC). We focus on the problem of how to schedule the transmission of the sensor to minimize the estimation error at the remote side with less communication cost. Using the framework of the Markov decision process (MDP), the optimal scheduling policy is shown to be deterministic stationary (DS). We further derive its double threshold structure with respect to remote estimation errors and channel states. Moreover, a necessary and sufficient condition guaranteeing the mean-square stability of the remote estimator is given based on the structured scheduling policy. Numerical simulations are provided to verify the theoretical results.

摘要

在本文中,我们考虑了信息物理系统(CPS)中远程状态估计的最优传感器调度问题。与现有关于无线通信网络中时不变信道状态的研究工作不同,我们的工作考虑了由有限状态马尔可夫信道(FSMC)建模的时变信道状态。我们关注的问题是如何调度传感器的传输,以在降低通信成本的情况下,使远程端的估计误差最小化。利用马尔可夫决策过程(MDP)框架,最优调度策略被证明是确定性平稳(DS)的。我们进一步推导了其关于远程估计误差和信道状态的双阈值结构。此外,基于结构化调度策略给出了保证远程估计器均方稳定的充要条件。通过数值模拟验证了理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验