Rodriguez Raul D, Fatkullin Maxim, Garcia Aura, Petrov Ilia, Averkiev Andrey, Lipovka Anna, Lu Liliang, Shchadenko Sergey, Wang Ranran, Sun Jing, Li Qiu, Jia Xin, Cheng Chong, Kanoun Olfa, Sheremet Evgeniya
Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia.
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China.
Adv Mater. 2022 Oct;34(43):e2206877. doi: 10.1002/adma.202206877. Epub 2022 Sep 23.
Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio I /I = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10 m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.
玻璃电子学激发了智能功能表面的出现。为了将这一概念提升到更高水平,开发用于可扩展、低成本且具有导电性的玻璃基坚固纳米复合材料的新策略至关重要。石墨烯作为一种导电填料是一种有吸引力的材料;然而,到目前为止,在不进行耗能烧结、熔化或使用苛刻化学物质的情况下将其牢固地集成到玻璃中是不可能的。此外,这些方法制造电子电路坚固图案的能力非常有限。在这项工作中,通过单步激光诱导反向转移(LIBT)实现了玻璃与石墨烯之间的导电(160 Ω/sq)且有弹性的纳米复合材料。与涉及质量转移的传统LIBT不同,这种方法同时驱动玻璃中的化学转变,包括硅化合物的形成和氧化石墨烯(GO)的还原。这些过程与迄今为止报道的最高质量的激光还原GO(rGO)(拉曼强度比I /I = 0.31)的产生和转移及其集成到玻璃中同时发生。rGO-LIBT纳米复合材料进一步用银进行功能化,以实现高灵敏度(10 m)的双通道等离子体光学和电化学传感器。除了电路演示外,还制造了一种电热加热器,其温度可达300°C以上,并能连续运行超过48小时。