Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland.
New Phytol. 2022 Dec;236(5):1734-1747. doi: 10.1111/nph.18448. Epub 2022 Sep 17.
Efficient root-to-shoot delivery of water and nutrients in plants relies on the correct differentiation of xylem cells into hollow elements. While auxin is integral to the formation of xylem cells, it remains poorly characterized how each subcellular pool of this hormone regulates this process. Combining genetic and cell biological approaches, we investigated the bipartite activity of nucleoplasmic vs plasma membrane-associated phosphatidylinositol 4-phosphate kinases PIP5K1 and its homolog PIP5K2 in Arabidopsis thaliana roots and uncovered a novel mechanism by which phosphoinositides integrate distinct aspects of the auxin signaling cascade and, in turn, regulate the onset of xylem differentiation. The appearance of undifferentiated cells in protoxylem strands of pip5k1 pip5k2 is phenomimicked in auxin transport and perception mutants and can be partially restored by the nuclear residence of PIP5K1. By contrast, exclusion of PIP5K1 from the nucleus hinders the auxin-mediated induction of the xylem master regulator VASCULAR RELATED NAC DOMAIN (VND) 7. A xylem-specific increase of auxin levels abolishes pip5k1 pip5k2 vascular defects, indicating that the establishment of auxin maxima is required to activate VND7-mediated xylem differentiation. Our results describe a new mechanism by which distinct subcellular pools of phosphoinositides integrate auxin transport and perception to initiate xylem differentiation in a spatiotemporal manner.
植物中水分和养分从根部到茎叶的有效输送依赖于木质部细胞正确地分化为中空的结构。尽管生长素对于木质部细胞的形成是必不可少的,但它如何调节这个过程仍然没有被很好地描述,即激素的每个亚细胞池是如何发挥作用的。通过结合遗传和细胞生物学方法,我们研究了核质与质膜相关的磷酸肌醇 4-磷酸激酶 PIP5K1 及其同源物 PIP5K2 在拟南芥根中的二联体活性,并揭示了磷酯酰肌醇如何整合生长素信号级联的不同方面,进而调节木质部分化开始的新机制。在 pip5k1 pip5k2 中,未分化细胞出现在原木质部链中,这一现象在生长素运输和感知突变体中被模拟,并且可以通过 PIP5K1 的核定位部分恢复。相比之下,将 PIP5K1 排除在核外会阻碍生长素介导的木质部主调控因子 VASCULAR RELATED NAC DOMAIN (VND) 7 的诱导。生长素水平的木质部特异性增加可以消除 pip5k1 pip5k2 的血管缺陷,表明建立生长素最大值是激活 VND7 介导的木质部分化所必需的。我们的研究结果描述了一个新的机制,即不同的质膜磷酯酰肌醇亚细胞池通过生长素运输和感知来整合,从而以时空方式启动木质部分化。