Goh Teffanie, Pandharkar Riddhish, Gagliardi Laura
Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States.
J Phys Chem A. 2022 Sep 15;126(36):6329-6335. doi: 10.1021/acs.jpca.2c04730. Epub 2022 Aug 30.
Molecular electron spin qubits with optical manipulation schemes are some of the most promising candidates for modern quantum technologies. Key values that determine a compound's viability for optical-spin initialization and readout include its singlet-triplet gap and zero-field splitting (ZFS) parameters. Generally, these values are very small in magnitude and are thus difficult to reproduce with theoretical methods. Here, we study a previously identified optically addressable molecular qubit, (CF)trenVCNBu (tren = tris(2-aminoethyl)amine), using the complete active space self-consistent field (CASSCF) and post-CASSCF methods: complete active space second-order perturbation theory (CASPT2), multiconfiguration pair-density functional theory (MC-PDFT), and hybrid MC-PDFT (HMC-PDFT). Of those methods, we successfully reproduce the singlet-triplet gap and ZFS parameters with reasonable accuracy using 0.5 HMC-PDFT and CASPT2. Four additional V complexes with differing ligands were also investigated. We found that the ligands have minimal effect on the spin properties of the molecule and propose them to be optically addressable qubit candidates. These potential qubits are further analyzed in terms of ab initio ligand field theory (AILFT) to understand the influence of the ligands on the singlet-triplet gap and ZFS parameters.
具有光学操纵方案的分子电子自旋量子比特是现代量子技术中最有前途的候选者之一。决定化合物用于光学自旋初始化和读出的可行性的关键值包括其单重态-三重态能隙和零场分裂(ZFS)参数。一般来说,这些值的量级非常小,因此很难用理论方法重现。在这里,我们使用完全活性空间自洽场(CASSCF)和后CASSCF方法:完全活性空间二阶微扰理论(CASPT2)、多组态对密度泛函理论(MC-PDFT)和混合MC-PDFT(HMC-PDFT),研究了一种先前确定的光学可寻址分子量子比特(CF)trenVCNBu(tren = 三(2-氨基乙基)胺)。在这些方法中,我们使用0.5 HMC-PDFT和CASPT2成功地以合理的精度重现了单重态-三重态能隙和ZFS参数。我们还研究了另外四种具有不同配体的V配合物。我们发现配体对分子的自旋性质影响最小,并提出它们是光学可寻址量子比特候选物。根据从头算配体场理论(AILFT)对这些潜在的量子比特进行了进一步分析,以了解配体对单重态-三重态能隙和ZFS参数的影响。