Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
Int J Biol Macromol. 2022 Nov 30;221:355-370. doi: 10.1016/j.ijbiomac.2022.08.156. Epub 2022 Aug 28.
According to current research, anti-cancer anthraquinones impact telomere disruption and may interact with G-quadruplex DNA that triggers signaling to apoptosis. The present study represents the biophysical investigation of oxidative stress, late apoptosis, and induced senescence among cancer cells after binding laboratory synthesized piperidine-based anthraquinone derivatives, 2, 6- Bis [(3-piperidino)acetamido)]anthracene-9,10-dione (N1P) and 2, 6-Bis [piperidino)propionamido]anthracene-9,10-dione (N2P), with G-quadruplex DNA. We employed biophysical approaches to explore the interaction of synthetic anthraquinone derivatives with quadruplex DNA sequences to influence biological activities in the presence of K and Na cations. The binding affinity for N2P and N1P are K = 5.8 × 10 M and K = 1.0 × 10 M, respectively, leading to hypo-/hyper-chromism with 5-7 nm red shift and significant fluorescence quenching and changes in ellipticity resulting in external binding of both the ligands to G-quadruplex DNA. Ligand binding induced enhancement of thermostability of G4 DNA is greater in Na environment (ΔT = 34 °C) as compared to that in K environment (ΔT = 21 °C), thereby restricting telomerase binding access to telomeres. Microscopic images of treated cells indicated cellular shape, nuclear condensation, and fragmentation alterations. The findings pave the path for therapeutic research, given the great potential of modifying anthraquinone substituent groups towards improved efficacy, ROS generation, and G-quadruplex DNA selectivity.
根据目前的研究,抗癌蒽醌类化合物会影响端粒的破坏,并可能与 G-四链体 DNA 相互作用,从而触发细胞凋亡信号。本研究代表了对癌细胞中氧化应激、晚期凋亡和诱导性衰老的生物物理研究,这些变化是在与实验室合成的哌啶基蒽醌衍生物结合后发生的,这两种衍生物为 2,6-双[(3-哌啶基)乙酰胺基]蒽-9,10-二酮(N1P)和 2,6-双[哌啶基)丙酰胺基]蒽-9,10-二酮(N2P),它们与 G-四链体 DNA 相互作用。我们采用生物物理方法研究了合成蒽醌衍生物与四链体 DNA 序列的相互作用,以在存在 K 和 Na 阳离子的情况下影响生物活性。N2P 和 N1P 的结合亲和力分别为 K = 5.8×10 M 和 K = 1.0×10 M,导致 5-7nm 的红移和显著的荧光猝灭以及椭圆率的变化,从而导致两种配体与 G-四链体 DNA 的外部结合。与 K 环境(ΔT = 21°C)相比,在 Na 环境中,配体结合诱导的 G4 DNA 热稳定性增强更大(ΔT = 34°C),从而限制端粒酶与端粒的结合。处理细胞的显微镜图像表明细胞形态、核浓缩和核碎片发生改变。鉴于修饰蒽醌取代基以提高疗效、ROS 生成和 G-四链体 DNA 选择性的巨大潜力,这些发现为治疗研究铺平了道路。