Suppr超能文献

基于临床参数的 DNA 甲基化分类预测可为青少年骨髓单核细胞白血病患者的预后建立预测模型。

Clinical parameter-based prediction of DNA methylation classification generates a prediction model of prognosis in patients with juvenile myelomonocytic leukemia.

机构信息

Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan.

Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, USA.

出版信息

Sci Rep. 2022 Aug 30;12(1):14753. doi: 10.1038/s41598-022-18733-4.

Abstract

Juvenile myelomonocytic leukemia (JMML) is a rare heterogeneous hematological malignancy of early childhood characterized by causative RAS pathway mutations. Classifying patients with JMML using global DNA methylation profiles is useful for risk stratification. We implemented machine learning algorithms (decision tree, support vector machine, and naïve Bayes) to produce a DNA methylation-based classification according to recent international consensus definitions using a well-characterized pooled cohort of patients with JMML (n = 128). DNA methylation was originally categorized into three subgroups: high methylation (HM), intermediate methylation (IM), and low methylation (LM), which is a trichotomized classification. We also dichotomized the subgroups as HM/IM and LM. The decision tree model showed high concordances with 450k-based methylation [82.3% (106/128) for the dichotomized and 83.6% (107/128) for the trichotomized subgroups, respectively]. With an independent cohort (n = 72), we confirmed that these models using both the dichotomized and trichotomized classifications were highly predictive of survival. Our study demonstrates that machine learning algorithms can generate clinical parameter-based models that predict the survival outcomes of patients with JMML and high accuracy. These models enabled us to rapidly and effectively identify candidates for augmented treatment following diagnosis.

摘要

婴儿骨髓单核细胞白血病 (JMML) 是一种罕见的异质性血液系统恶性肿瘤,发生于婴幼儿期,其特征是存在 RAS 通路突变。使用全球 DNA 甲基化谱对 JMML 患者进行分类,有助于进行风险分层。我们使用机器学习算法(决策树、支持向量机和朴素贝叶斯),根据最近的国际共识定义,对具有 JMML 的特征明确的患者队列(n=128)进行了基于 DNA 甲基化的分类。最初将 DNA 甲基化分为三组:高甲基化(HM)、中甲基化(IM)和低甲基化(LM),这是一种三分类。我们还将亚组分为 HM/IM 和 LM。决策树模型与基于 450k 的甲基化高度一致[分别为二分类的 82.3%(106/128)和三分类的 83.6%(107/128)]。通过独立队列(n=72),我们证实了这些模型在使用二分类和三分类时均能高度预测生存。我们的研究表明,机器学习算法可以生成基于临床参数的模型,预测 JMML 患者的生存结果,具有很高的准确性。这些模型使我们能够在诊断后迅速有效地识别需要增强治疗的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b34/9427938/0515e46a1efe/41598_2022_18733_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验