ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077, New Delhi, India.
International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Parasit Vectors. 2022 Aug 30;15(1):309. doi: 10.1186/s13071-022-05422-4.
Malaria is a life-threatening parasitic disease caused by members of the genus Plasmodium. The development and spread of drug-resistant strains of Plasmodium parasites represent a major challenge to malaria control and elimination programmes. Evaluating genetic polymorphism in a drug target improves our understanding of drug resistance and facilitates drug design. Approximately 450 and 19 whole-genome assemblies of Plasmodium falciparum and Plasmodium vivax, respectively, are currently available, and numerous sequence variations have been found due to the presence of single nucleotide polymorphism (SNP). In the study reported here, we analysed global SNPs in the malaria parasite aminoacyl-tRNA synthetases (aaRSs). Our analysis revealed 3182 unique SNPs in the 20 cytoplasmic P. falciparum aaRSs. Structural mapping of SNPs onto the three-dimensional inhibitor-bound complexes of the three advanced drug targets within aaRSs revealed a remarkably low mutation frequency in the crucial aminoacylation domains, low overall occurrence of mutations across samples and high conservation in drug/substrate binding regions. In contrast to aaRSs, dihydropteroate synthase (DHPS), also a malaria drug target, showed high occurrences of drug resistance-causing mutations. Our results show that it is pivotal to screen potent malaria drug targets against global SNP profiles to assess genetic variances to ensure success in designing drugs against validated targets and tackle drug resistance early on.
疟疾是一种由疟原虫属成员引起的危及生命的寄生虫病。疟原虫寄生虫耐药株的发展和传播对疟疾控制和消除规划构成了重大挑战。评估药物靶点的遗传多态性可以提高我们对耐药性的认识,并有助于药物设计。目前,疟原虫恶性疟原虫和间日疟原虫分别有大约 450 个和 19 个全基因组组装,由于单核苷酸多态性(SNP)的存在,发现了许多序列变异。在本研究中,我们分析了疟原虫氨基酸酰基-tRNA 合成酶(aaRS)中的全球 SNP。我们的分析显示,在 20 种细胞质恶性疟原虫 aaRS 中有 3182 个独特的 SNP。SNP 结构映射到 aaRS 内三个先进药物靶点的三维抑制剂结合复合物上,揭示了在关键的氨酰化结构域突变频率极低,在样本中整体突变发生率较低,以及在药物/底物结合区域高度保守。与 aaRS 不同的是,二氢叶酸合成酶(DHPS),也是疟疾药物靶点,表现出高频率的耐药性突变。我们的结果表明,筛选针对全球 SNP 谱的有效疟疾药物靶点至关重要,以评估遗传变异,确保针对已验证靶点设计药物的成功,并尽早应对耐药性。